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The concepts of double coset representations and sphericities of double cosets are
proposed to characterize stereoisomerism, where double cosets are classified into three
types, i.e., homospheric double cosets, enantiospheric double cosets, or hemispheric dou-
ble cosets. They determine modes of substitutions (i.e., chirality fittingness), where
homospheric double cosets permit achiral ligands only; enantiospheric ones permit
achiral ligands or enantiomeric pairs; and hemispheric ones permit achiral and chiral
ligands. The sphericities of double cosets are linked to the sphericities of cycles which
are ascribed to right coset representations. Thus, each cycle is assigned to the corre-
sponding sphericity index (ad , cd , or bd ) so as to construct a cycle indices with chiral-
ity fittingness (CI-CFs). The resulting CI-CFs are proved to be identical with CI-CFs
introduced in Fujita’s proligand method (S. Fujita, Theor. Chem. Acc. 113 (2005)
73–79 and 80–86). The versatility of the CI-CFs in combinatorial enumeration of ste-
reoisomers is demonstrated by using methane derivatives as examples, where the num-
bers of achiral plus chiral stereoisomers, those of achiral stereoisomers, and those
of chiral stereoisomers are calculated separately by means of respective generating
functions.

KEY WORDS: coset representation, double coset representation, enumeration, sphe-
ricity, stereoisomer

1. Introduction

Pólya’s theorem [1,2] has been widely applied to chemical combinatorics, as
disclosed in books [3–5] and reviews [6–8]. In the applications of Pólya’s the-
orem, permutation representations have been obtained directly by the permut-
ing behavior of a given skeleton. Although this methodology is effective to most
cases, it is insufficient when it is applied to combinatorial enumeration with tak-
ing account of both chiral and achiral ligands as substituents. For example, by
following Pólya’s theorem, we should use the symmetric group of degree 4 in
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216 S. Fujita / Combinatorial enumeration of stereoisomers

enumeration of molecules derived from a tetrahedral skeleton, where the two iso-
mers (enantiomers) with the molecular formula ABXY are counted once as well
as the two isomers (diastereomers) with the molecular formula ABpp are also
counted once. Note that a central carbon atom is omitted in these formulas and
that A, B, X, and Y are achiral ligands in isolation, while p and p are chiral and
enantiomeric to each other in isolation. Because two stereoisomers with the for-
mula ABpp have been well-known as a pseudo-asymmetric case, they should be
counted twice in order to meet the start-of-the-art stereochemistry.

To avoid the drawback of Pólya’s theorem, Fujita has reported “the proli-
gand method” [9, 10], where a new concept “sphericities of cycles” was proposed
as a key to manipulate chiral and achiral ligands concurrently. The sphericity
concept is based on the correspondence between point groups and coset repre-
sentations, which gives more informative results than the simple and direct usage
of permutation representations adopted by Pólya’s theorem.

The original sphericity concept proposed in Fujita’s unit-subduced-
cycle-index (USCI) approach [11] was formulated in a slightly different context,
i.e., “sphericities of orbits”. The sphericity concept formulated in Fujita’s proli-
gand method [9, 10] was related to the original one [11] through an interme-
diate concept “sphericities of orbits for cyclic subgroups” [12–15], which serves
as a common basis linking both of the sphericity concepts. It should be noted
that the sphericity concepts of the two types and the intermediate concept are all
based on the correspondence between point groups and coset representations.

On the other hand, the concept of double cosets has been used to chemi-
cal combinatorics in various contexts [16–20]. Fujita’s USCI approach has been
also discussed in connection with the concept of double cosets [21]. Because
of the close relationship between Fujita’s proligand method and Fujita’s USCI
approach, there should be expected the relationship between Fujita’s proligand
method and the concept of double cosets. Hence, the demonstration of this rela-
tionship will provide us with an additional formulation of Fujita’s proligand
method so as to bring out a deeper insight to stereoisomerism.

In the present paper, the concepts of double coset representations and sphericities
of double cosets will be proposed to characterize stereoisomerism. The latter concept
will be linked with the concept of sphericities of cycles so as to construct a cycle index
with chirality fittingness (CI-CF). The CI-CF will be proved to be identical with that
of Fujita’s proligand method introduced in another way [9].

2. Double coset representations and stereoisomers

2.1. Right coset representations

In order to define double coset representations, we first define right coset
representations, which are here distinguished from left coset representations. In
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general [11], a subgroup H of a given point group G gives a set of right cosets
as follows:

H\G = {Hg1
︸︷︷︸

1

, Hg2
︸︷︷︸

2

, Hg3
︸︷︷︸

3

, . . . , Hgr
︸︷︷︸

r

}, (1)

where we place r = |G|/|H| and g1 = I (identity). The set is regarded as an
ordered set so as to give a permutation represented by the following formula,
when any operation g(∈ G) is multiplied from the right-hand direction.

g
[R]∼

⎛

⎝

Hg1 Hg2 Hg3 · · · Hgr
Hg1g Hg2g Hg3g · · · Hgr g

⎞

⎠ (2)

∼
(

1 2 3 · · · r
t [R]
g1 t [R]

g2 t [R]
g3 · · · t [R]

gr

)

= p[R]
g , (3)

where t [R]
gi (i = 1, 2, 3, . . . , r ) represents a set of permuted numbers. If g is an

improper rotation of G, each t [R]
gi (i = 1, 2, 3, . . . , r ) is specified by an overbar so

as to show the inversion of chirality, e.g., t [R]
gi (i = 1, 2, 3, . . . , r ) for an improper

rotation g. When g runs over the point group G, we obtain the following right
coset representation:

(H\)G = {p[R]
g |∀g ∈ G}. (4)

The following examples show a procedure for constructing of a right coset
representation (C3v\)Td by using a methane skeleton as examples. First, we shall
demonstrate the symmetry elements and their multiplication for manipulating a
methane skeleton of the Td -symmetry.

Example 1 [Symmetry elements and multiplication table of Td ]. The notation of
symmetry elements adopted here for the Td -point group (figure 1) is the same
one as reported in a previous paper [22], where coset decompositions of the Td -
point group have been discussed in an introductory way [22]. The detailed spec-
ification is shown in the caption of figure 1. The multiplication table of the the
Td -point group is shown in figure 2, where the symmetry operations are num-
bered sequentially for the sake of convenience.

Although the numbering of the symmetry elements in figure 2 is selected in
accord with a coset decomposition of Td by D2, i.e.,

Td = D2 + D2C3(1) + D2C2
3(1) + D2σd(1) + D2σd(2) + D2σd(3) (5)

the mode of numbering can be selected arbitrarily from the 24! ways of permu-
tation without losing generality.
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Figure 1. Methane skeleton of Td -symmetry. A pair of mirror planes (σd(2)/σd(4), σd(3)/σd(5), or
σd(1)/σd(6)) located at the x- y-, or z-axis represents a perpendicular set of planes containing the
respective axis. The threefold rotations C3(i) (i = 1, 2, 3, 4) represents a clockwise rotation by 120◦
around the respective threefold axes (i.e., C3(i) for i = 1, 2, 3, 4), which run from the center to the
respective positions (numbered as i = 1, 2, 3, 4). The three twofold axes (C2(1), C2(2), and C2(3)) and
the three fourfold rotoreflection axes (S4(1), S4(2), and S4(3)) run through x-, y-, and z-coordinate
axes, respectively. The six mirror planes exhibit the following features: σd(2) (containing the 3-C-
4 plane) and σd(4) (containing the 1-C-2 plane) intersect each other perpendicularly at the x-axis;
σd(3) (containing the 2-C-3 plane) and σd(5) (containing the 1-C-4 plane) intersect each other per-
pendicularly at the y-axis; and σd(1) (containing the 2-C-4 plane) and σd(6) (containing the 1-C-3
plane) intersect each other perpendicularly at the z-axis.

Example 2 [Right coset representation (C3v\)Td ]. One of the four threefold axes
is selected to give a C3v point group as a subgroup of the Td point group:

C3v = C3v(1) = { I
︸︷︷︸

1

, C3(1)
︸︷︷︸

5

, C2
3(1)

︸︷︷︸

9

, σd(1)
︸︷︷︸

13

, σd(2)
︸︷︷︸

17

, σd(3)
︸︷︷︸

21

}, (6)

where the numbering of the symmetry operations is shown in figure 2. Thereby,
we obtain the corresponding right coset decomposition as follows:

Td = C3v + C3vC2(1) + C3vC2(3) + C3vC2(2) (7)

=
{

1 5 9
13 17 21

}

︸ ︷︷ ︸

1

+
{

2 6 10
14 18 22

}

︸ ︷︷ ︸

2

+
{

4 8 12
16 20 24

}

︸ ︷︷ ︸

3

+
{

3 7 11
15 19 23

}

︸ ︷︷ ︸

4

, (8)

where the numbering of the symmetry operations contained in each coset is
shown in figure 2. Then, the following set of right cosets is obtained:

C3v\Td = {C3v
︸︷︷︸

1

, C3vC2(1)
︸ ︷︷ ︸

2

, C3vC2(3)
︸ ︷︷ ︸

3

, C3vC2(2)
︸ ︷︷ ︸

4

}, (9)

where these cosets are numbered sequentially from 1 to 4. Note that an arbitrary
mode of numbering is selected for equation (9) from the 4! ways of numbering
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Figure 2. Multiplication table of Td .

without losing generality. When each coset is multiplied by g (∈ G), the follow-
ing permutation is obtained:

g
[R]∼

(

C3v C3vC2(1) C3vC2(3) C3vC2(2)

C3vg C3vC2(1)g C3vC2(3)g C3vC2(2)g

)

(10)

∼
(

1 2 3 4
t [R]
g1 t [R]

g2 t [R]
g3 t [R]

g4

)

= p[R]
g . (11)
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When g runs over G, the resulting permutations generate a right coset represen-
tation as follows:

(C3v\)Td = {p[R]
g | ∀g ∈ Td}, (12)

which is transitive under Td . For the sake of convenience, each p[R]
g is expressed

as a product of cycles, e.g.,

C2(1)
[R]∼

(

C3v I C3vC2(1) C3vC2(3) C3vC2(2)

C3vC2(1) C3v I C3vC2(2) C3vC2(3)

)

(13)

∼ p[R]
C2(1)

=
(

1 2 3 4
2 1 4 3

)

= (1 2)(3 4), (14)

where (1 2) and (3 4) represent cycles to show the transformations of the rele-
vant right cosets. The concrete form of the right coset representation (C3v\)Td
is shown in figure 3 along with other data which will be discussed later.

Each coset shown in equation (9) corresponds to a hydrogen of methane
(2), as shown in figure 4. When the symmetry operations of Td act on the meth-
ane 2, 24 formulas are generated as shown in figure 4, where the four hydrogen
atoms of methane are governed by the right coset representation (C3v\)Td shown
in equation 12 and figure 3.

All of the 24 formulas appearing in figure 4 are identical with each other if
the numbering of the positions is omitted.

2.2. Double coset representations

Let K be another subgroup of G. By starting from the set of cosets shown
in equation (1), the following set of double cosets are obtained:

H\G/K = {Hg1K
︸ ︷︷ ︸

f (1)

, Hg2K
︸ ︷︷ ︸

f (2)

, . . . , Hgi K
︸ ︷︷ ︸

f (i)

, . . . , Hgr K
︸ ︷︷ ︸

f (r)

}, (15)

where f ( f (i) for i = 1, 2, . . . , r ) is a function for numbering or labeling the
resulting double cosets. If two or more double cosets are identical, they are num-
bered or labeled by the same value of the function but they are distinguished in
accord with the numbering of the original right cosets. Because the function f
corresponds to a stereoisomer as described below, the product of the components
f (i) represents the molecular formula (Mf ) of the stereoisomer as follows:

Mf =
r

∏

i=1

f (i). (16)
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Figure 3. Right coset representation (C3v\)Td and products of sphericity indices. Each cycle
appearing in an improper rotation is designated by an overbar, which represents the inversion of

ligand chirality.

Figure 4. Four hydrogen atoms of methane, which are governed by the right coset representation
(C3v\)Td shown in equation (12) (and figure 3).
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By starting from the right coset representation shown in equation (4) (i.e.,
(H\)G), the following permutation is obtained:

g
[R]∼

(

Hg1K Hg2K · · · Hgi K · · · Hgr K
Hg1gK Hg2gK · · · Hgi gK · · · Hgr gK

)

(17)

∼
(

f (1) f (2) · · · f (i) · · · f (r)

f (t [R]
g1 ) f (t [R]

g2 ) · · · f (t [R]
gi ) · · · f (t [R]

gr )

)

= q[R]
g . (18)

If Hgi g is identical with Hg j , the corresponding double coset Hgi gK is identical
with Hg j K so that the Hgi gK is specified by the same number or label as Hg j K.
This means that each double coset appearing in equation (17) corresponds to
one of the right cosets in one-to-one fashion. When g runs over the point group
G, we obtain the following representation of the group G:

(H\)G(/K) = {q[R]
g |∀g ∈ G}, (19)

which is transitive and homomorphic to the right coset representation shown in
equation (4), i.e., (H\)G. When the function shown in equation (15) is selected
as an ordered set for reference, i.e.,

f I = { f (1), f (2), f (3), . . . , f (r)}, (20)

the permutation q[R]
g (equation 19) generates another function represented by the

following equation:

fg =
{

f (t [R]
g1 ), f (t [R]

g2 ), f (t [R]
g3 ), . . . , f (t [R]

gr )
}

. (21)

The functions shown in equation (21) (g ∈ G) correspond to formulas appearing
in stereoisomer enumeration. The following example shows a double coset rep-
resentation, which is related to a stereoisomer derived from a methane skeleton
of Td -symmetry.

Example 3 [Double coset representation for Td ]. By starting from the set of
right cosets C3v\Td shown in equation (8) and a subgroup C2v:

C2v = { I
︸︷︷︸

1

, C2(1)
︸︷︷︸

2

, σd(2)
︸︷︷︸

17

, σd(4)
︸︷︷︸

18

} (22)
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let us consider a set of double cosets according to equation (15) as follows:

C3v\Td/C2v

= {C3v I C2v, C3vC2(1)C2v, C3vC2(3)C2v, C3vC2(2)C2v} (23)

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

1 5 9
13 17 21

}

︸ ︷︷ ︸

1
{

2 6 10
14 18 22

}

︸ ︷︷ ︸

2

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f (1) = A

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

2 6 10
14 18 22

}

︸ ︷︷ ︸

2
{

1 5 9
13 17 21

}

︸ ︷︷ ︸

1

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f (2) = A

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

4 8 12
16 20 24

}

︸ ︷︷ ︸

3
{

3 7 11
15 19 23

}

︸ ︷︷ ︸

4

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f (3) = B

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

3 7 11
15 19 23

}

︸ ︷︷ ︸

4
{

4 8 12
16 20 24

}

︸ ︷︷ ︸

3

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f (4) = B

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

,

(24)

where the two right cosets contained in each double coset are shown separately
and put in braces for the sake of convenience. It should be noted that the num-
bering of the double cosets (or of the functions f ) in equation (24) is in accord
with that of the right cosets shown in equation (9). Because the double cosets,
C3v I C2v and C3vC2(1)C2v, are identical, they are labeled by the letter A so that
we place f (1) = f (2) = A. On the other hand, because the double cosets,
C3vC2(3)C2v and C3vC2(2)C2v, are identical, they are labeled by the letter B so
that we place f (3) = f (4) = B. By considering f (1), f (2), f (3), and f (4) as
components, we define a function f = { f (1), f (2), f (3), f (4)} as a reference
function. According to equation (18), the following permutation is obtained:

g ∼
(

C3v I C2v C3vC2(1)C2v C3vC2(3)C2v C3vC2(2)C2v

C3v IgC2v C3vC2(1)gC2v C3vC2(3)gC2v C3vC2(2)gC2v

)

(25)

∼
(

f (1) f (2) f (3) f (4)

f (tg1) f (tg2) f (tg3) f (tg4)

)

=
(

A A B B
T1 T2 T3 T4

)

= qg, (26)

where the alignment {T1, T2, T3, T4} represents a permuted alignment of {A, A, B,
B}. By moving g over G, the permutation qg (equation (11)) generates a double
coset representation according to equation (19) as follows:

(C3v\)Td(/C2v) = {qg|∀g ∈ Td}. (27)

The reference function f = f I = { f (1), f (2), f (3), f (4)} corresponds to the
formula 26 shown in figure 5. Each permutation qg (equation (27)) generates a
formula corresponding to the function fg, i.e.,

fg = { f (tg1), f (tg2), f (tg3), f (tg4)}.
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Figure 5. Tetrahedral formulas generated in accord with the double coset representation
(C3v\)Td (/C2v). Each formula is accompanied by a derivative ID number, a symmetry opera-

tion, and the ID of the symmetry operation in a pair of brackets (cf. figure 2).

Each function represents a formula shown in figure 5, where the positions of each
formula are numbered in the same way as those of the corresponding formula shown
in figure 4. For example, the permutation (1)(2 3 4) for the threefold rotation C3(1)

(figure 3) generates 6 shown in figure 4 as well as 34 shown in figure 5.

By the inspection of the double coset representation (equation (17)), the
term gK generates left cosets when g runs over G. Thereby, we obtain the cor-
responding set of left cosets as follows:

G/K = { g̃1K
︸︷︷︸

1

, g̃2K
︸︷︷︸

2

, g̃3K
︸︷︷︸

3

, . . . , g̃sK
︸︷︷︸

s

}, (28)

where we place g̃1 = I (identity). The set is regarded as an ordered set so as
to give a permutation represented by the following formula, when any operation
g(∈ G) is multiplied from the left-hand direction.
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g
[L]∼

(

g̃1K g̃2K g̃3K · · · g̃sK
gg̃1K gg̃2K gg̃3K · · · gg̃sK

)

(29)

∼
(

1 2 3 · · · s
t [L]
g1 t [L]

g2 t [L]
g3 · · · t [L]

gs

)

= p[L]
g , (30)

where t [L]
g j ( j = 1, 2, 3, . . . , s) represents a set of permuted numbers and we place

s = |G|/|K|. When g runs over the point group G, we obtain the following left
coset representation:

G(/K) = {p[L]
g | ∀g ∈ G}. (31)

By the inspection of equations (17) and (29), we obtain the following theorem:

Theorem 1. 1. The permutations which are contained in the double coset
representation (H\)G(/K) (equation (19)) are partitioned into |G|/|K|
sets of permutations, where each set is represented by {q[R]

g |g ∈ g̃ j K} for
g̃ j ( j = 1, 2, . . . , s) appearing in equation (28).

2. Each set {q[R]
g |g ∈ g̃ j K} is fixed by the action of K from the right-hand

direction. ��
Proof. 1. In equation (17), each double coset Hgi K is identical with

Hgi gK (i = 1, 2, . . . , r ), if g ∈ K. This means that q[R]
g (equation (18)) is

an identity permutation if g runs over K.

2. If g and k are selected from the coset g̃ j K (i.e., g ∈ g̃ j K and k ∈ g̃ j K,
where j is fixed), each of them can be regarded as a representative of the
coset g̃ j K. Thereby, we obtain gK = kK = g̃ j K so as to show Hgi gK =
Hgi kK = Hgi g̃ j K. This means that q[R]

g (equation (18)) represents the
same permutation, if g runs over the left coset g̃ j K ( j = 1, 2, . . . , s).

3. Because Hgi gK = Hgi g̃ j K for g ∈ g̃ j K when j is fixed, we obtain
Hgi gKk = Hgi g̃ j Kk = Hgi g̃ j K if k ∈ K. It follows that each set {q[R]

g |g ∈
g̃ j K} is fixed by the action of K. ��

In terms of theorem 1(2), the formulas contained in respective sets {q[R]
g |g ∈

g̃ j K} express different modes of permutation, representing a single stereoiso-
mer of K-symmetry (strictly speaking, a single achiral stereoisomer or a single
enantiomeric pair of chiral stereoisomers). The relationship between the formu-
las contained in each set is referred to as being identical, while the relationship
among such sets is referred to as being homomeric.

As a continuation of example 3, the following example shows the partition
of A2B2-formulas into equivalence classes (orbits).
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Example 4 [Homomeric formulas]. Each permutation qg (equation (11) for g ∈
Td ) transforms f I (26) into one of the 24 formulas shown in figure 5, which are
in accord with the double coset representation (C3v\)Td(/C2v) (equation (27)).

Theorem 1 indicates that the 24 formulas are partitioned into six (=
|Td |/|C2v| = 24/4) sets, each of which is surrounded with a box (figure 5). This
is confirmed by the following procedure. Because the left coset decomposition of
Td by C2v is expressed by

Td = I C2v + C2(3)C2v + C3(1)C2v + C3(2)C2v + C2
3(1)C2v + C2

3(2)C2v (32)

its representative (i.e., {I, C2(3), C3(1), C3(2), C2
3(1)

, C2
3(2)

} = {1, 4, 5, 7, 9, 12}) are
selected to partition the functions fg (g ∈ Td ). Because the operations I , C2(1),
σd(2), and σd(4) are contained in C2v, we obtain C3vgi I C2v = C3vgi C2(1)C2v =
C3vgiσd(2)C2v = C3vgiσd(4)C2v = C3vC2v. This means that f I = fC2(1)

= fσd(2)
=

fσd(4)
, so that the four formulas listed in the first box of figure 5 are identical

with each other when the numbering is omitted.
Let us next consider the action of C2(3). Equations (10) and (11) for g =

C2(3) are calculated as follows:

C2(3) ∼
(

C3v I C2v C3vC2(1)C2v C3vC2(3)C2v C3vC2(2)C2v

C3v I C2(3)C2v C3vC2(1)C2(3)C2v C3vC2(3)C2(3)C2v C3vC2(2)C2(3)C2v

)

=
(

C3v I C2v C3vC2(1)C2v C3vC2(3)C2v C3vC2(2)C2v

C3vC2(3)C2v C3vC2(2)C2v C3v I C2v C3vC2(1)C2v

)

(33)

∼
(

f (1) f (2) f (3) f (4)

f (3) f (4) f (1) f (2)

)

=
(

A A B B
B B A A

)

= qC2(3)
, (34)

which generates the function fC2(3)
= {B, B, A, A}, corresponding to the formula

30. Because the operations C2(3), C2(2), S4(1), and S3
4(1)

are contained in C2(3)C2v,
we obtain C3vgi C2(3)C2v = C3vgi C2(2)C2v = C3vgi S4(1)C2v = C3vgi S3

4(1)
C2v.

Hence, the same function {B, B, A, A} is obtained, i.e., fC2(3)
= fC2(2)

= fS4(1)
=

fS3
4(1)

. It follows that the four formulas listed in the second box of figure 5 are

identical with each other when the numbering is omitted.
In a similar way, each representative shown in equation (32) generates the

formula at the top of the corresponding box shown in figure 5 (i.e., 26, 30, 34,
38, 42, and 46) so that each box represents an orbit of four formulas. The six
representatives (i.e., 26, 30, 34, 38, 42, and 46) express homomeric formulas,
which are regarded as expressing a single achiral stereoisomers having a molec-
ular formula A2B2.

The formulas collected in figure 5 can be related directly to a multiplication
table (figure 6), which is obtained by reordering the elements of figure 2. The
following example demonstrates the construction of the reordered multiplication
table for (C3v\)Td(/C2v) (equation (27)).
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Figure 6. Reordered multiplication table for the double coset representation (C3v\)Td (/C2v).
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Figure 7. Tetrahedral formulas generated in accord with the double coset representation
(C3v\)Td (/S4)[R].

Example 5 [Reordered multiplication table for (C3v\)Td(/C2v)]. The construc-
tion of the double coset representation (C3v\)Td(/C2v) (equaion (27)) can be
regarded as the reordering of the multiplication table shown in figure 2. By reor-
dering the rows of figure 2 in accord with the right coset decomposition of Td
by C3v (equation (8)) and by reordering the columns of figure 2 in accord with
the left coset decomposition of Td by C2v (equation (32)), we can obtain a reor-
dered multiplication table, as shown in Figure 6.

The four blocks of each column represent the corresponding right cosets,
each of which contains a half part of the corresponding double coset (equa-
tion (24)) so as to be specified by the symbol A or B, as shown at the top of
each block. Thereby, the corresponding function fg (via a set of double cosets) is
obtained by collecting a permuted set of symbols A, A, B, and B from the tops
of the blocks. As a result, each column corresponds to one of the 24 formulas
(26–49), as shown in the bottom of figure 6. For example, the column #4 (i.e.,
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C2(3)), which corresponds to equations (33) and (34), is specified by the function
fC2(3) ={B, B, A, A} so that the column is linked to the formula 30, as shown in
the bottom of the column. ��

2.3. Conjugate subgroups for homomers of stereoisomers

According to theorem 1, a permutation q[R]
g̃ j

can be selected as a represen-

tative selected from each of the sets {q[R]
g |g ∈ g̃ j K} ( j = 1, 2, . . . , s). The per-

mutations (q[R]
g̃ j

) correspond to s functions, i.e., fg̃1, fg̃2, . . . fg̃ j , . . . fg̃s , where g̃ j

represents the representatives appearing in equation (28). Note that the functions
fg̃ j (i = 1, 2, . . . , s) indicate homomers, which represent a single stereoisomer (an
achiral stereoisomer or an enantiomeric pair of chiral stereoisomers). Because of
equation (21), each function is represented by r (= |G|/|H|) components, i.e.,
fg̃ j = { f (t [R]

g1 ), f (t [R]
g2 ), . . ., f (t [R]

gr )} for g = g̃ j ( j = 1, 2, . . . , s(= |G|/|K|))
appearing in equation (28). The numbering of the components is changed so as
to give a renumbered function f j , the components of which are represented by
f j (1) = f (t [R]

g1 ), f j (2) = f (t [R]
g2 ), . . ., f j (r) = f (t [R]

gr ). Thereby, we obtain

f j = { f j (1), f j (2), . . . , f j (r)} = { f (t [R]
g1 ), f (t [R]

g2 ), . . . , f (t [R]
gr )} (35)

for g = g̃ j ( j = 1, 2, . . . , s(= |G|/|K|)) appearing in equation (28).
The procedure of renumbering (equation (35)) is ascribed to (Hgi g̃ j K)g̃−1

j ,
which is equal to Hgi (g̃ j Kg̃−1

j ) because of the associative law. As a result, the
renumbering means that the group K in the double coset Hgi K is replaced by a con-
jugate subgroup g̃ j Kg̃−1

j so as to select another double coset Hgi (g̃ j Kg̃−1
j ) for each

j (= 1, 2, . . . , s(= |G|/|K|)). Hence, we obtain a set of double cosets as follows:

H\G/g̃ j Kg̃−1
j = {Hg1(g̃ j Kg̃−1

j )
︸ ︷︷ ︸

f j (1)

, Hg2(g̃ j Kg̃−1
j )

︸ ︷︷ ︸

f j (2)

, . . . , Hgr (g̃ j Kg̃−1
j )

︸ ︷︷ ︸

f j (r)

}, (36)

where Hgi (g̃ j Kg̃−1
j ) in equation (36) and Hgi g j K (cf. equations (15) and (17))

are equalized to be renumbered as designated in equation (35). On the same line
as equation (18), we obtain the following permutation:

g ∼
(

Hg1(g̃ j Kg̃−1
j ) Hg2(g̃ j Kg̃−1

j ) · · · Hgr (g̃ j Kg̃−1
j )

Hg1g(g̃ j Kg̃−1
j ) Hg2g(g̃ j Kg̃−1

j ) · · · Hgr g(g̃ j Kg̃−1
j )

)

=
(

f j (1) f j (2) · · · f j (r)

f j (t
[R]
g1 ) f j (t

[R]
g2 ) · · · f j (t

[R]
gr )

)

= q( j)[R]
g , (37)

where g runs over G. Each double coset appearing in equation (37) corresponds
to one of the right cosets in one-to-one fashion. When g runs over the point
group G, we obtain the following representation of the group G:
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(H\)G(/g̃ j Kg̃−1
j ) = {q( j)[R]

g |∀g ∈ G}, (38)

which is transitive and homomorphic to the right coset representation shown in
equation (4), i.e., (H\)G.

The component Hgi g̃ j K, which is generated from Hgi K by the action of
g̃ j (equation (19)), is further transformed into Hgi g̃ j (g̃ j Kg̃ j ), where the K of
the Hgi g̃ j K is replaced by the conjugate subgroup g̃−1

j Kg̃ j . On the other hand,
the component Hgi (g̃ j Kg̃−1

j ), which is generated from Hgi K by the process
K → g̃ j Kg̃−1

j , is transformed by the action of g̃ j (equation (38)) into the same
Hgi g̃ j (g̃ j Kg̃ j ) as above. The two routes are summarized so as to generate the
following scheme:

Kgi K
g̃ j−−−−−−−−→

equation (19)
Hgi g̃ j K

K→ g̃ j Kg̃−1
j

� �
K→ g̃ j Kg̃−1

j .

Hgi (g̃ j Kg̃−1
j )

g̃ j−−−−−−−−→
equation (38)

Hgi g̃ j (g̃ j Kg̃−1
j )

(39)

This scheme means that s (= |G|/|K|) double coset representations ( j = 1,

2, . . . , s in equation (37)) move concurrently in agreement with the same right coset
representation (H\)G (equation (4)), as summarized in the following theorem.

Theorem 2. 1. The s (= |G|/|K|) homomers specified by {q[R]
g |g ∈ g̃ j K} ( j = 1,

2, . . . , s) in theorem 1 are alternatively expressed as s sets of double co-
sets, i.e., H\G/g̃ j Kg̃−1

j ( j = 1, 2, . . . , s in equation (36)), which is based
on the subgroups g̃ j Kg̃−1

j conjugate to K.

2. Each set of double cosets H\G/g̃ j Kg̃−1
j (g j is tentatively fixed) is permuted in

terms of the double coset representation (equation (37)), which is in accord
with the same right coset representation (H\)G (equation (4)).

Theorem 1(2) indicates that the function f1 is transformed into |G|
functions but fixed under the action of K, where the number of fixed functions is
equal to |K|. On the same line, the function f j is transformed into |G| functions
but fixed under the action of g̃ j Kg̃−1

j , because the component Hgi g(g̃ j Kg̃−1
j ) is

equal to the original one Hgi (g̃ j Kg̃−1
j ) if g is contained in the subgroup g̃ j Kg̃−1

j .
It follows that the number of fixed functions is equal to |g̃ j Kg̃−1

j | = |K| for each
j . When j runs from 1 to s (= |G|/|K|), the total number of fixed functions for
f j is calculated to be |K| × s = |G|. It should be noted that the functions f j
( j = 1, 2, . . . , s) are so equivalent as to represent a derivative of K-symmetry on



S. Fujita / Combinatorial enumeration of stereoisomers 231

the basis of the skeleton governed by (H\)G. In other words, theorem 2 indicates
that the set (F) represented by

F = { f1, f2, . . . , fs}, (40)

where the functions f j are shown in equation (35) ( j = 1, 2, . . . , s) and s =
|G|/|K|, represents a equivalence class (orbit). The orbit F is regarded as a
homomer set indicating a single achiral derivative of K-symmetry or a single
enantiomeric pair of chiral derivatives of K-symmetry on the basis of the skel-
eton governed by (H\)G. This is summarized to give a theorem:

Theorem 3. When the set F of functions shown in equation (40) represent a
derivative of K-symmetry on the basis of the skeleton governed by (H\)G, the
total number of fixed functions under the action of G is equal to |G|. ��

It should be noted that a derivative of K-symmetry means a single achiral deriv-
ative if K is an achiral group, or a single pair of enantiomers if K is a chiral group.

Example 6 [Renumbered formulas]. As shown in the bottom part of figure 5, the
positions of the formulas 26 (reference), 30, 34, 38, 42, and 46 are renumbered
by following equation (35) so that we obtain the corresponding renumbered for-
mulas 26 (reference), 50–54.

In accord with the representative due to equation (32), the subgroups con-
jugate to C2v are calculated as follows.

C2v = { I
︸︷︷︸

1

, C2(1)
︸︷︷︸

2

, σd(2)
︸︷︷︸

17

, σd(4)
︸︷︷︸

18

}, (41)

C2(3)C2vC−1
2(3)

= C2v = { I
︸︷︷︸

1

, C2(1)
︸︷︷︸

2

, σd(2)
︸︷︷︸

17

, σd(4)
︸︷︷︸

18

}, (42)

C3(1)C2vC−1
3(1)

= C′
2v = { I

︸︷︷︸

1

, C2(2)
︸︷︷︸

3

, σd(1)
︸︷︷︸

21

, σd(3)
︸︷︷︸

23

}, (43)

C3(2)C2vC−1
3(2)

= C′
2v = { I

︸︷︷︸

1

, C2(2)
︸︷︷︸

3

, σd(1)
︸︷︷︸

21

, σd(3)
︸︷︷︸

23

}, (44)

C2
3(1)C2vC−2

3(1)
= C′′

2v = { I
︸︷︷︸

1

, C2(3)
︸︷︷︸

4

, σd(1)
︸︷︷︸

13

, σd(3)
︸︷︷︸

16

}, (45)

C2
3(2)C2vC−2

3(2)
= C′′

2v = { I
︸︷︷︸

1

, C2(3)
︸︷︷︸

4

, σd(1)
︸︷︷︸

13

, σd(3)
︸︷︷︸

16

}. (46)

The reference function f obtained by using the set of double cosets
C3v\Td/C2v (equation (23)) is adopted as f1, i.e., f1(1)=A, f1(2) = A, f1(3) =
B, and f1(4) = B, which corresponds to 26. The function f1 generates 24 (=
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|Td |/|C2v|) formulas shown in figure 5 on the action of the permutations con-
tained in the coset representation (C3v\)Td (Figure 3).

The same set of double cosets C3v\Td/C2v is regarded as C3v\Td/C2(3)

C2vC−1
2(3)

, which gives the function f2 corresponding to 50, i.e., f2(1)=B, f2(2) =
B, f2(3) = A, and f2(4) = A.

By combining C3v\Td (equation (9)) with C3(1)C2vC−1
3(1)

(= C′
2v shown in

equation (43)), we obtain another set of double cosets C3v\Td/C′
2v, i.e.,

C3v\Td/C3(1)C2vC−1
3(1)

= C3v\Td/C′
2v

= {C3v I C′
2v, C3vC2(1)C′

2v, C3vC2(3)C′
2v, C3vC2(2)C′

2v} (47)

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

1 5 9
13 17 21

}

︸ ︷︷ ︸

1
{

3 7 11
15 19 23

}

︸ ︷︷ ︸

4

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f3(1) = A

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

2 6 10
14 18 22

}

︸ ︷︷ ︸

2
{

4 8 12
16 20 24

}

︸ ︷︷ ︸

3

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f3(2) = B

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

4 8 12
16 20 24

}

︸ ︷︷ ︸

3
{

2 6 10
14 18 22

}

︸ ︷︷ ︸

2

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f3(3) = B

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

3 7 11
15 19 23

}

︸ ︷︷ ︸

4
{

1 5 9
13 17 21

}

︸ ︷︷ ︸

1

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f3(4) = A

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

.

(48)

This set gives the function f3 corresponding to 51, i.e., f3(1)=A, f3(2)= B,
f3(3)=B, and f3(4) = A. By taking equation (44) into consideration, the same set
of double cosets C3v\T/C′

2v (equation (48)) is regarded as C3v\T/C3(2)C2vC−1
3(2)

,
which gives the function f4 corresponding to 52, i.e., f4(1) = B, f4(2) = B,
f4(3) = A, and f4(4) = A.

By combining C3v\Td (equation (9)) with C2
3(1)

C2vC−2
3(1)

(= C′′
2v shown in

equation (45)), we obtain an additional set of double cosets C3v\Td/C′′
2v, i.e.,

C3v\Td/C2
3(1)C2vC−2

3(1)
= C3v\Td/C′′

2v

= {C3v I C′′
2v, C3vC2(1)C′′

2v, C3vC2(3)C′′
2v, C3vC2(2)C′′

2v} (49)

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

1 5 9
13 17 21

}

︸ ︷︷ ︸

1
{

4 8 12
16 20 24

}

︸ ︷︷ ︸

3

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f5(1) = A

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

2 6 10
14 18 22

}

︸ ︷︷ ︸

2
{

3 7 11
15 19 23

}

︸ ︷︷ ︸

4

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f5(2) = B

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

4 8 12
16 20 24

}

︸ ︷︷ ︸

3
{

1 5 9
13 17 21

}

︸ ︷︷ ︸

2

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f5(3) = A

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

3 7 11
15 19 23

}

︸ ︷︷ ︸

4
{

2 6 10
14 18 22

}

︸ ︷︷ ︸

2

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f5(4) = B

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

.

(50)
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This set gives the function f5 corresponding to 53, i.e., f5(1) = A, f5(2) = B,
f5(3) = A, and f5(4) = B. By taking equation (46) into consideration, the same set of
double cosets C3v\T/C′′

2v (equation (48)) is regarded as C3v\T/C2
3(2)

C2vC−2
3(2)

, which
gives the function f6 corresponding to 54, i.e., f6(1) = B, f6(2) = A, f6(3) = B, and
f6(4) = A.

As found in the preceding paragraphs, each function f j ( j = 1, 2, . . . , 6 =
|Td |/|C2v|) generates 24 (= |Td |) formulas (cf. figure 5 for f1), among which four
(= |C2v|) formulas are fixed under the action of g̃ j C2v g̃−1

j , where g̃ j is selected from
the representative appearing in equation (32), i.e., {I, C2(3), C3(1), C3(2), C2

3(1)
, C2

3(2)
}.

Hence, total number of fixed formulas is determined to be |C2v| × |Td |/|C2v| =
4 × (24/4) = 24, which is in agreement with theorem 3. Note that |g̃ j C2v g̃−1

j | =
|C2v| = 4.

3. Sphericities

3.1. Sphericities of double cosets

When K is achiral, there exists the maximum chiral subgroup K′, which
contains all of the proper rotations of K, satisfying |K| = 2|K′|. The subgroup
K′ generates a coset decomposition as follows:

K = K′ + σK′, (51)

where the σ operation is an improper rotation which satisfies σσ ∈ K′. Then,
each double coset Hgi K shown in equation (15) is partitioned into two parts at
most as follows:

Hgi K = Hgi K′ ∪ HgiσK′, (52)

where Hgi K′ may be equal or not equal to HgiσK′. On the same line as equa-
tion (15), the following set of double cosets are obtained:

H\G/K′ = {Hg1K′
︸ ︷︷ ︸

f ′(1)

, Hg2K′
︸ ︷︷ ︸

f ′(2)

, . . . , Hgi K′
︸ ︷︷ ︸

f ′(i)

, . . . Hgr K′
︸ ︷︷ ︸

f ′(r)

}, (53)

where f ′ ( f ′(i) for i = 1, 2, . . . , r ) is a function for numbering or labeling the
resulting double cosets. If two or more double cosets are identical, they are num-
bered or labeled by the same value of the function but they are distinguished in
accord with the numbering of the original right cosets.

By starting from the right coset representation shown in equation (4) (i.e.,
(H\)G), the following permutation is obtained:
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g
[R]∼

(

Hg1K′ Hg2K′ · · · Hgi K′ · · · Hgr K′
Hg1gK′ Hg2gK′ · · · Hgi gK′ · · · Hgr gK′

)

(54)

∼
(

f ′(1) f ′(2) · · · f ′(i) · · · f ′(r)

f ′(t [R]
g1 ) f ′(t [R]

g2 ) · · · f ′(t [R]
gi ) · · · f ′(t [R]

gr )

)

= q ′[R]
g . (55)

When g runs over the point group G, we obtain the following representation of
the group G:

(H\)G(/K′) = {q ′[R]
g |∀g ∈ G}, (56)

which is transitive and homomorphic to the right coset representation shown in
equation (4), i.e., (H\)G.

When K is achiral or chiral and the supergroup G is achiral, there exist
three cases in terms of equation (52):

1. Homospheric case: The double coset Hgi K is defined to be homospheric
if Hgi K = Hgi K′ for an achiral group K and its maximum chiral sub-
group K′.

2. Enantiospheric case: The double coset Hgi K is defined to be enantio-
spheric if Hgi K 
= Hgi K′ for an achiral group K and its maximum chiral
subgroup K′.

3. Hemispheric case: The double coset Hgi K is defined to be hemispheric if
K represents a chiral subgroup.

The target of the present paper is to find functions f suitable to the
sphericities of double cosets. As for homospheric and enantiospheric cases, in
particular, our target is to find a common function to the two sets of double
cosets, i.e., H\G/K (equation (15)) and H\G/K′ (equation (53)). In other words,
we shall find a way to equalize the function f for H\G/K (equation (15)) and
the function f ′ for H\G/K′ (equation (53)).

3.1.1. Homospheric double cosets
When the relationship Hgi K = Hgi K′ holds true for the homospheric dou-

ble coset Hgi K, equation (51) shows that Hgi K′ ∪ HgiσK′ = Hgi K′. This means
that Hgi K′ = HgiσK′, because HgiσK′ is not vacant. Because of Hgi K′ =
HgiσK′, the two double cosets due to the achiral K are equal to each other, i.e.,
Hgi K = HgiσK. It follows that f (i) and f (tσi ) shown in equation (18) are equal
to each other and, at the same time, f ′(i) and f ′(tσi ) shown in equation (55) are
equal to each other. Because the pairs f (i)/ f (tσi ) and f ′(i)/ f ′(tσi ) indicate enan-
tiomeric pairs, respectively, the present case is regarded as a self-enantiomeric
one. Hence, in order that the functions f (i) and f ′(i) are labeled commonly,
they should allow the occupation of an achiral object (chemically speaking, an
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achiral ligand) and by no means the occupation of a chiral object (a chiral lig-
and). This mode of occupation is called “chirality fittingness (CF)”, which has
been discussed in different contexts such as “chirality fittingness of a homospher-
ic orbit” [11] and “chirality fittingness of a homospheric cycle” [9]. In the present
case, the CFs is concerned with a homospheric double coset so that a homo-
spheric double coset exhibits CFs in which only an achiral ligand is allowed.

Obviously, the same conclusion holds true if the homospheric double co-
sets Hgi (g j Kg−1

j ) are considered in place of the homospheric double coset Hgi K
described above.

Example 7 [Homospheric double coset for (C3v\)Td(/C2v)]. This is a contin-
uation of example 3. The homosphericities of double cosets contained in
(C3v\)Td(/C2v) are tested here. By starting from C3v\Td shown in equation (9)
and a subgroup C2:

C2 = { I
︸︷︷︸

1

, C2(1)
︸︷︷︸

2

} (57)

let us consider a set of double cosets according to equation (15) as follows:

C3v\Td/C2 = {C3v I C2, C3vC2(1)C2, C3vC2(3)C2, C3vC2(2)C2} (58)
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(59)

This is identical with equation (24) so that we obtain C3vC2v=C3vC2,
C3vC2(1)C2v=C3vC2(1)C2C3vC2(3)C2v=C3vC2(3)C2, and C3vC2(2)C2v=C3vC2(2)C2.
Hence, the double cosets C3vC2v, C3vC2(1)C2vC3vC2(3)C2v, and C3vC2(2)C2v are ho-
mospheric. The functions such as f ′(1) = A (or A) represent self-enantiomeric lig-
ands. Thus, an achiral ligand A and its hypothetical mirror image A are superposable,
i.e., A = A. ��

3.1.2. Enantiospheric double cosets
When the relationship Hgi K 
= Hgi K′ holds true for the enantiospheric

double coset Hgi K, equation (51) shows that Hgi K′ 
= HgiσK′. In other words,
equation (52) can be rewritten as follows:
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Hgi K = Hgi K′ + HgiσK′. (60)

Because Hgi K
′

and HgiσK′ are different, the set of double coset represented
by equation (53) contains Hgi K

′
and Hgi ′K′ as distinct double cosets, where we

place gi ′ = giσ . It should be noted that the pair Hgi K
′

and HgiσK′ is considered
to show mirror images of each other.

Let us consider HgiσK that corresponds to HgiσK′ as the Hgi K corre-
sponds to Hgi K′. Then, equation (60) gives:

HgiσK = HgiσK′ + HgiσσK′ = HgiσK′ + Hgi K′ = Hgi K. (61)

Because we place gi ′ = giσ , equation (61) shows that Hgi K = Hgi ′K. In accord
with the pairwise appearance of Hgi K′ and Hgi ′K′ as distinct double cosets
( f ′(i) 
= f ′(i ′)), the double cosets Hgi K and Hgi ′K appear pairwise, although
their labels become degenerate so as to be equal to each other (i.e., f (i) = f (i ′))
under K. These results can be summarized as the following scheme:

Scheme I
Hgi K = Hgi ′K(= HgiσK) · · · H\G/K (equation (15))

f (i) f (i ′)
↑↓ ↑↓

Hgi K
′ 
= Hgi ′K′(= HgiσK′) · · · H\G/K′ (equation (53))

f ′(i) f ′(i ′)

It should be emphasized again that the set of double cosets H\G/K (equation
(15)) contains the pair of Hgi K and Hgi ′K(= HgiσK), which are equal to each
other, i.e., f (i) = f (i ′). However, the corresponding pair of Hgi K′ and Hgi ′K′
contained in the set of double coset H\G/K′ (equation (53)) indicates different
double cosets so as to exhibit f ′(i) 
= f ′(i ′). In other words, the ith double coset
Hgi K and the i ′th double coset Hgi ′K, although they are equal under K, corre-
spond to Hgi K

′
( f ′(i)) and Hgi ′K′ ( f ′(i ′)), respectively.

By operating a proper rotation g on the whole of scheme I, the scheme is
converted into the following scheme:

Scheme II
Hgi gK = Hgi ′ gK(= HgiσgK) · · · H\G/K (equation (15))
f (tgi ) f (tgi ′)
↑↓ ↑↓

Hgi gK
′ 
= Hgi ′ gK′(= HgiσgK′) · · · H\G/K′. (equation (53)).

f ′(tgi ) f ′(tgi ′)

Because σg is an improper rotation, we obtain Hgi gK
′ 
= HgiσgK′ = Hgi ′ gK′.

The comparison between schemes I and II shows that the nature of the pair
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gi/gi ′ (i.e., proper/improper or improper/proper) for scheme I remain unchanged
on the action of g so as to be equal to the nature of the pair gi g/gi ′ g (i.e.,
proper/improper or improper/proper) for scheme II. In particular, when we select
g (∈ K′), the double cosets contained in scheme II are calculated as follows:
Hgi gK

′ = Hgi K
′

and Hgi ′gK′ = Hgi ′K′(= HgiσK′). It follows that the dou-
ble coset Hgi K

′
contained in Hgi K is not mixed with the double coset Hgi ′K

′

contained in Hgi ′K on the action of a proper rotation g.
On the other hand, by operating an improper rotation σg on the whole of

scheme I, the scheme is converted into the following scheme:

HgiσgK = Hgi ′σgK(= HgiσσgK) · · · H\G/K (equation (15))
f (tσgi ) f (tσgi ′)

↑↓ ↑↓
HgiσgK

′ 
= Hgi ′σgK′(= HgiσσgK′) · · · H\G/K′ (equation (53)),
f ′(tσgi ) f ′(tσgi ′)

which means:

Scheme III
Hgi ′gK = Hgi (σσg)K · · · H\G/K (equation (15)),
f (tσgi ) f (tσgi ′)

↑↓ ↑↓
Hgi ′ gK′ 
= Hgi (σσg)K

′ · · · H\G/K′ (equation (53)).
f ′(tσgi ) f ′(tσgi ′)

Note that σσg is a proper rotation because both the σσ (∈ K′) and the g
are proper rotations. The comparison between schemes I and III shows that the
nature of the pair gi/gi ′ (i.e., proper/improper or improper/proper) for scheme
I suffers from inversion of chirality on the action of the improper rotation
σg so as to be opposite to the nature of the resulting pair gi ′ g/gi (σσg) (i.e.,
improper/proper or proper/improper) for scheme III. It follows that the oper-
ation of σg results in the exchange between Hgi K and Hgi ′K as well as the
exchange between Hgi K′ and Hgi ′K′.

The discussions in the preceding paragraphs, the pair f (i)/ f (i ′) in scheme I
represents the occupation of an enantiomeric pair of chiral objects (or ligands).
Even if achiral objects are used, the pair f (i)/f (i ′) means that their symmetries
are restricted to be chiral locally. The pair f (t gi )/f (t gi ′ ) generated on the action of
a proper rotation g in scheme II represents the maintenance of the local chirality,
while the pair f (tσgi )/f (tσgi ′ ) generated on the action of an improper rotation σg
in scheme III represents the inversion of the local chirality. It follows that f (i)
and f (i ′) should be occupied (1) by achiral ligands of the same kind or (2) by
an enantiomeric set of chiral ligands. In agreement with “chirality fittingness of
an enantiospheric orbit” [11] and “chirality fittingness of an enantiospheric cycle”
[9], the present case shows CF of an enantiospheric double coset, in which two
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achiral ligands or an enantiomeric pair of chiral ligands are allowed. Thereby, the
two functions, i.e., f for H\G/K (equation (15)) and f ′ for H\G/K′ (equation
(53)), are occupied commonly in agreement with the chirality fittingness.

Obviously, the same conclusion holds true if the enantiospheric double co-
sets Hgi (g j Kg−1

j ) are considered in place of the enantiospheric double coset Hgi K
described above.

Example 8 [Enantiospheric double cosets for (C3v\)Td(/S4)]. By starting from
C3v\Td (equation (9)) and a subgroup S4:

S4 = { I
︸︷︷︸

1

, C2(1)
︸︷︷︸

2

, S4(1)
︸︷︷︸

19

, S3
4(1)

︸︷︷︸

20

} (62)

let us consider a set of double cosets according to equation (15) as follows:

C3v\Td/S4 = {C3v I S4, C3vC2(1)S4, C3vC2(3)S4, C3vC2(2)S4}. (63)
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f (4) = p

⎫
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⎪
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⎪
⎪
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⎪
⎪
⎪
⎬

⎪
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⎪
⎪
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⎪
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⎪
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⎪
⎪
⎪
⎭

.

(64)

Hence, we obtain a set of double cosets of the same kind, i.e., C3v I S4=C3vC2(1)S4
= C3vC2(3)S4 = C3vC2(2)S4, each of which contains all of the operations of Td .
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The maximum chiral subgroup of the group S4 is the group C2 shown in equa-
tion (57), which gives the same set of double cosets shown in equation (59):

C3v\Td/C2 = {C3v I C2, C3vC2(1)C2, C3vC2(3)C2, C3vC2(2)C2}. (65)

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

1 5 9
13 17 21

}

︸ ︷︷ ︸

1
{

2 6 10
14 18 22

}

︸ ︷︷ ︸

2

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f ′(1) = p, p

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

2 6 10
14 18 22

}

︸ ︷︷ ︸

2
{

1 5 9
13 17 21

}

︸ ︷︷ ︸

1

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f ′(2) = p, p

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

4 8 12
16 20 24

}

︸ ︷︷ ︸

3
{

3 7 11
15 19 23

}

︸ ︷︷ ︸

4

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f ′(3) = p, p

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

3 7 11
15 19 23

}

︸ ︷︷ ︸

4
{

4 8 12
16 20 24

}

︸ ︷︷ ︸

3

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f ′(4) = p, p

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

.

(66)

The set C3v\Td/C2 (equation (66)) is not equal to the set C3v\Td/S4 (equation
(64)) so that the latter set is concluded to be enantiospheric.

In accord with the enantiospheric nature of C3v\Td/S4 (equation (64)),
a common function f = f ′ is allowed by selecting components such as
{ f (1) = f ′(1) = p, f (2) = f ′(2) = p, f (3) = f ′(3) = p, f (4) = f ′(4) = p}
or { f (1) = f ′(1) = p, f (2) = f ′(2) = p, f (3) = f ′(3) = p, f (4) = f ′(4) = p}
if chiral ligands are taken into consideration. Moreover a function having achi-
ral ligands A (= A) is also allowed as components, i.e., { f (1) = f ′(1) = A,
f (2) = f ′(2) = A, f (3) = f ′(3) = A, f (4) = f ′(4) = A}.

When a methane skeleton is considered, the function f (i.e., { f (1) = f ′(1) =
p, f (2) = f ′(2) = p, f (3) = f ′(3) = p, f (4) = f ′(4) = p}) for C3v\Td/S4 (equa-
tion (64)) corresponds to the formula 55 shown in figure 7. According to equa-
tion (18), the following permutation is obtained:

g ∼
(

C3v I S4 C3vC2(1)S4 C3vC2(3)S4 C3vC2(2)S4
C3v IgS4 C3vC2(1)gS4 C3vC2(3)gS4 C3vC2(2)gS4

)

(67)

∼
(

f (1) f (2) f (3) f (4)

f (tg1) f (tg2) f (tg3) f (tg4)

)

=
(

p p p p
T1 T2 T3 T4

)

= qg, (68)

where the alignment {T1, T2, T3, T4} represents a permuted alignment of {p, p, p,
p}. By moving g over G, the permutation qg (equation (68)) generates a double
coset representation according to equation (19) as follows:

(C3v\)Td(/S4) = {qg|∀g ∈ Td}. (69)

Each permutation of equation (69) generates the corresponding formula shown
in figure 7.
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Figure 8. Reordered multiplication table of Td .
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Because the left coset decomposition of Td by S4 is expressed by

Td = I S4 + C2(3)S4 + C3(1)S4 + C3(2)S4 + C2
3(1)S4 + C2

3(2)S4 (70)

its representative (i.e., {I, C2(3), C3(1), C3(2), C2
3(1)

, C2
3(2)

} = {1, 4, 5, 7, 9, 12}) are
selected to partition the functions fg (g ∈ Td ). Theorem 1 indicates that the 24
formulas are partitioned into six (= |Td |/|S4| = 24/4) sets, each of which is sur-
rounded with a box (figure 7). The top formulas of respective boxes, i.e., 55, 59,
63, 67, 71, and 75, are renumbered to the formulas shown at the respective bot-
toms, i.e., 55, 79–83.

Example 9 [Reordered multiplication table for (C3v\)Td(/S4)]. The construc-
tion of the double coset representation (C3v\)Td(/S4) (equation (69)) can be
regarded as the reordering of the multiplication table shown in figure 2. By reor-
dering the rows of figure 2 in accord with the right coset decomposition of Td by
C3v (equation (8)) and by reordering the columns of figure 2 in accord with the
left coset decomposition of Td by S4 (equation (70)), we can obtain a reordered
multiplication table, as shown in figure 8.

The four blocks of each column represent the corresponding right cosets,
each of which contains a half-part of the corresponding double coset (equation
(66)) so as to be specified by the symbol p (= p) or p, as shown at the top of
each block. Thereby, the corresponding function fg (via a set of double cosets)
is obtained by collecting a permuted set of symbols p, p, p, and p from the tops
of the blocks. As a result, each column corresponds to one of the 24 formulas
(55–78), as shown in the bottom of figure 8.

Example 10 [Renumbered formulas]. Let us consider the renumbered formulas
shown in the bottom part of figure 7 (i.e., 55–83). In accord with the representative
due to equation (70), the subgroups conjugate to S4 are calculated as follows.

S4 = { I
︸︷︷︸

1

, C2(1)
︸︷︷︸

2

, S4(1)
︸︷︷︸

19

, S3
4(1)

︸︷︷︸

20

} · · · 55( f1), (71)

C2(3)S4C−1
2(3)

= S4 = { I
︸︷︷︸

1

, C2(1)
︸︷︷︸

2

, S4(1)
︸︷︷︸

19

, S3
4(1)

︸︷︷︸

20

} · · · 79( f2), (72)

C3(1)S4C−1
3(1)

= S′
4 = { I

︸︷︷︸

1

, C2(2)
︸︷︷︸

3

, S4(2)
︸︷︷︸

24

, S3
4(2)

︸︷︷︸

22

} · · · 80( f3), (73)

C3(2)S4C−1
3(2)

= S′
4 = { I

︸︷︷︸

1

, C2(2)
︸︷︷︸

3

, S4(2)
︸︷︷︸

24

, S3
4(2)

︸︷︷︸

22

} · · · 81( f4), (74)
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C2
3(1)S4C−2

3(1)
= S′′

4 = { I
︸︷︷︸

1

, C2(3)
︸︷︷︸

4

, S4(3)
︸︷︷︸

14

, S3
4(3)

︸︷︷︸

15

} · · · 82( f5), (75)

C2
3(2)S4C−2

3(2)
= S′′

4 = { I
︸︷︷︸

1

, C2(3)
︸︷︷︸

4

, S4(3)
︸︷︷︸

14

, S3
4(3)

︸︷︷︸

15

} · · · 83( f6). (76)

The reference function f obtained by using the set of double cosets
C3v\Td/S4 (equation (23)) is adopted as f1, i.e., f1(1) = p, f1(2) = p, f1(3) =
p, and f1(4) = p, which corresponds to 55. Other functions are collected in
figure 7. Each function f j ( j = 1, 2, . . . , 6) generates four (= |S4|) formulas
which are fixed under the corresponding stabilizer (S4, S′

4, or S′′
4) conjugate to

S4. According to theorem 3, the total number of fixed formulas is equal to 24
(= |S4| × |Td |/|S4| = 4 × (24/4) = 24). ��
Example 11 [Enantiospheric double cosets for (C3v\)Td(/Cs)]. This example
demonstrates so-called pseudoassymetry. By starting from C3v\Td shown in
equation (9) and a subgroup:

Cs = { I
︸︷︷︸

1

, σd(2)
︸︷︷︸

17

} (77)

let us consider a set of double cosets according to equation (15) as follows:

C3v\Td/Cs = {C3v I Cs, C3vC2(1)Cs, C3vC2(3)Cs, C3vC2(2)Cs}. (78)

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

1 5 9
13 17 21

}

︸ ︷︷ ︸

1
{

1 5 9
13 17 21

}

︸ ︷︷ ︸

1

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f (1) = A

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

2 6 10
14 18 22

}

︸ ︷︷ ︸

2
{

2 6 10
14 18 22

}

︸ ︷︷ ︸

2

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f (2) = B

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

4 8 12
16 20 24

}

︸ ︷︷ ︸

3
{

3 7 11
15 19 23

}

︸ ︷︷ ︸

4

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f (3) = p or p

,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{

3 7 11
15 19 23

}

︸ ︷︷ ︸

4
{

4 8 12
16 20 24

}

︸ ︷︷ ︸

3

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

f (4) = p or p

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

.

(79)

The first double coset C3v I Cs contains one coset, i.e., C3v I Cs (= C3v); and the
second double coset C3vC2(1)Cs contains one coset, i.e., C3vC2(1)Cs (= C3vC2(1)).
On the other hand, the third and fourth double cosets represent the same double
coset, i.e., C3vC2(3)Cs = C3vC2(2)Cs .

In accord with the homospheric or enantiospheric nature of the double co-
sets appearing in C3v\Td/Cs , a function ( f ) is allowed by selecting components
such as { f (1) = A, f (2) = B, f (3) = p, f (4) = p}, where A and B correspond
to distinct homospheric double cosets, while a pair of p and p corresponds to an
enantiospheric double cosets (equation (79)).
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When a methane skeleton is considered, the function f (i.e., { f (1) = A,
f (2) = B, f (3) = p, f (4) = p}) for C3v\Td/Cs (equation (79)) corresponds to
the formula 84 shown in figure 9. According to equation (18), the following per-
mutation is obtained:

g ∼
(

C3v I Cs C3vC2(1)Cs C3vC2(3)Cs C3vC2(2)Cs
C3v IgC2 C3vC2(1)gCs C3vC2(3)gCs C3vC2(2)gCs

)

(80)

∼
(

f (1) f (2) f (3) f (4)

f (tg1) f (tg2) f (tg3) f (tg4)

)

=
(

A B p p
T1 T2 T3 T4

)

= qg, (81)

where the alignment {T1, T2, T3, T4} represents a permuted alignment of {A, B, p,
p}. By moving g over G, the permutation qg (equation (81)) generates a double
coset representation according to equation (19) as follows:

(C3v\)Td(/Cs) = {qg|∀g ∈ Td}. (82)

Each permutation of equation (82) generates the corresponding formula shown
in figure 9. Because the left coset decomposition of Td by Cs is expressed by

Td = I Cs + C2(1)Cs + C2(2)Cs + C2(3)Cs + C3(1)Cs + C3(3)Cs

+ C3(2)Cs + C3(4)Cs + C2
3(1)Cs + C2

3(4)Cs + C2
3(3)Cs + C2

3(2)Cs (83)

its representative (i.e., {I, C2(1), C2(2), C2(3), C3(1), C3(3); C3(2), C3(4), C2
3(1)

, C2
3(4)

,
C2

3(3)
, C2

3(2)
} = {1, 2, 3, 4, 5, 6; 7, 8, 9, 10, 11, 12}) are selected to partition the func-

tions fg (g ∈ Td ). Theorem 1 indicates that the 24 formulas are partitioned into
12 (= |Td |/|Cs | = 24/2) sets, each of which is surrounded with a box (figure 9).

It should be noted that another distinct function f having components,
{ f (1) = A, f (2) = B, f (3) = p, f (4) = p}, is allowed in place of the set of
components described above, i.e., { f (1) = A, f (2) = B, f (3) = p, f (4) = p}. The
distinct function indicates the diastereomer of 84 so that it generates 24 formulas,
each of which is diastereomeric to the corresponding formula shown in figure 9.
The 24 formulas generated newly are also partitioned into 12 (= |Td |/|Cs | = 24/2)
in agreement with theorem 1. Thus, the two functions { f (1) = A, f (2) = B,
f (3) = p, f (4) = p} and { f (1) = A, f (2) = B, f (3) = p, f (4) = p} represent
so-called “pseudo-asymmetry”. ��
Example 12 [Reordered formulas]. The top formulas of respective boxes in
figure 9, i.e., 84, 86, 88, 90, 92, 94, 101, 103, 105, 107, 109, and 111, are renum-
bered by the functions f1 to f12 (for their components, see figure 9) so as to gen-
erated the formulas shown at the respective bottoms, i.e., 84, 96–100, 113–118.

In accord with the representative due to equation (83), the subgroups con-
jugate to Cs are calculated as follows.
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Figure 9. Tetrahedral formulas generated in accord with the double coset representation
(C3v\)Td (/Cs)[R].

Cs = C2(1)CsC−1
2(1)

= { I
︸︷︷︸

1

, σd(2)
︸︷︷︸

17

}, (84)

C′
s = C2(2)CsC−1

2(2)
= C2(3)CsC−1

2(3)
= { I

︸︷︷︸

1

, σd(4)
︸︷︷︸

18

}, (85)

C∗
s = C3(1)CsC−1

3(1)
= C3(1)CsC−1

3(1)
= { I

︸︷︷︸

1

, σd(3)
︸︷︷︸

21

}, (86)
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C∗′
s = C3(2)CsC−1

3(2)
= C3(4)CsC−1

3(4)
= { I

︸︷︷︸

1

, σd(5)
︸︷︷︸

23

}, (87)

C†
s = C2

3(1)CsC−2
3(1)

= C2
3(4)CsC−2

3(4)
= { I

︸︷︷︸

1

, σd(1)
︸︷︷︸

13

}, (88)

C†′
s = C2

3(3)CsC−2
3(3)

= C2
3(2)CsC−2

3(2)
= { I

︸︷︷︸

1

, σd(6)
︸︷︷︸

16

}. (89)

Among the 24 operations of the right coset representation (C3v\)Td
(figure 9), the operations of Cs fix the formulas 84 and 96 so that the number
of fixed formulas of each case is equal to 2. The numbers of fixed formulas by
the operations of C′

s are determined as indicated in the following pairs of paren-
theses: 97 (2) and 98 (2). The numbers of fixed formulas by the operations of C∗

s
are determined as follows: 99 (2) and 100 (2). The numbers of fixed formulas by
the operations of C∗′

s are determined as follows: 113 (2) and 114 (2). The num-
bers of fixed formulas by the operations of C†

s are determined as follows: 115 (2)
and 116 (2). The numbers of fixed formulas by the operations of C†′

s are deter-
mined as follows: 117 (2) and 118 (2). The remaining operations among the 24
operations of the right coset representation (C3v\)Td move the above formulas
so as to give no fixed formulas. Hence, the total number of fixed formulas for
ABpp is concluded to be equal to 24. Obviously, the diastereomer of 26 exhibits
another series of fixation, the total number of which is equal to 24, although the
generated formulas have the same molecular formula ABpp.

3.1.3. Hemispheric case
When K is a chiral subgroup of the achiral group G, a supergroup ̂K can

be selected so as to satisfy the following left coset decomposition:

̂K = K + σK, (90)

where the σ is an improper rotation, satisfying σσ ∈ K. Consider the double co-
sets Hgi K and HgiσK. They are contained in the set of double cosets H\G/̂K
(cf. equation (15)) as distinct double cosets, i.e.,

Hgi K 
= HgiσK (= Hgi ′K). (91)

Although the double cosets Hgi K and Hgi ′K (= HgiσK) (equation (91)) appear
in the set of double cosets H\G/K as distinct double cosets, they are not equiv-
alent under the chiral K, as shown in the following equation:

H\G/K = {. . . , Hgi K
︸ ︷︷ ︸

f (i)

, . . . ; . . . , Hgi ′K
︸ ︷︷ ︸

f (i ′)

, . . .}. (92)

It follows that Hgi K and Hgi ′K correspond to components of different values,
i.e., f (i) 
= f (i ′).
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Let gi be a proper rotation. Then gi ′(= giσ) is an improper rotation. The
action of a proper rotation g converts Hgi K into Hgi gK, but they correspond
to components of the same value, i.e., f (tgi ) = f (i), because the gi g is a proper
rotation. On the other hand, the action of an improper rotation σg converts
Hgi K into HgiσgK (= Hgi ′ gK). Because the operation gi ′ g(= giσg) is improper,
the latter (i.e., HgiσgK (= Hgi ′gK)) corresponds to a component of f (t gi ′),
which represents the chirality opposite to the f (i). The opposite chirality is des-
ignated by an overbar. Thus, any improper rotation results in the alternation of
chirality.

A similar discussion is available to the double coset Hgi ′K. The action of
a proper rotation g converts Hgi ′K into Hgi ′ gK, but they correspond to com-
ponents of the same value, i.e., f (tgi ′) = f (i ′). Thus no alternation of chirality
occurs because the gi ′ and the gi ′ g are both improper rotations. On the other
hand, the action of an improper rotation σg converts Hgi ′K into Hgi ′σgK (=
H(giσσ)gK), where the alternation of chirality occurs because the gi ′ is improper
while the giσσg is proper (cf. σσ ∈ K).

Because the chiral group K is taken into primary consideration, the CFs of
a hemispheric double coset can be summarized as follows:

1. A function f (equation (92)) for satisfying the K-symmetry has its com-
ponents, i.e., f (i) = p and f (i ′) = q, where p and q represent chiral lig-
ands. The inverse accommodation is also permissible, i.e., f (i) = q and
f (i ′) = p.

2. Another type of functions f for satisfying the K-symmetry is possible,
where its components are represented by f (i) = p and f (i ′) = A or
f (i) = A and f (i ′) = p.

3. If the K symmetry is determined by the remaining parts of H\G/K, such
functions as f (i) = A and f (i ′) = B are also permissible, where A and
B represent achiral ligands.

Obviously, the same conclusion holds true if the hemispheric double cosets
Hgi (g j Kg−1

j ) are considered in place of the hemispheric double coset Hgi K
described above.

When G is chiral, all of the subgroups of G are chiral. By considering ̂G
as a supergroup of the G, where the ̂G contains the G as the maximum chi-
ral subgroup. Thereby, the present cases of H\G/K can be regarded as another
type of hemispheric ones so that the discussions for the hemispheric double co-
sets described above are applicable to the present cases.

Example 13 [Hemispheric double cosets]. The chiral subgroup C2 shown in
equation (57), which gives the same set of double cosets C3v\Td/C2 shown in
equation (59) and (66). In accord with the hemispheric nature of C3v\Td/C2, a
function ( f ) is allowed by selecting components such as { f (1) = p, f (2) = p,



S. Fujita / Combinatorial enumeration of stereoisomers 247

f (3) = q, f (4) = q} or { f (1) = q, f (2) = q, f (3) = p, f (4) = p} if chiral
ligands are taken into consideration. Moreover a function having achiral ligands
A (= A) is also allowed as components, i.e., { f (1) = A, f (2) = A, f (3) = p,
f (4) = p}, and so on.

When a methane skeleton is considered, the function f (i.e., { f (1) = A,
f (2) = A, f (3) = p, f (4) = p}) for C3v\Td/C2 (equations (59) and (66)) corre-
sponds to the formula 119 shown in figure 10. According to equation (18), the
following permutation is obtained:

g ∼
(

C3v I C2 C3vC2(1)C2 C3vC2(3)C2 C3vC2(2)C2
C3v IgC2 C3vC2(1)gC2 C3vC2(3)gC2 C3vC2(2)gC2

)

(93)

∼
(

f (1) f (2) f (3) f (4)

f (tg1) f (tg2) f (tg3) f (tg4)

)

=
(

A A p p
T1 T2 T3 T4

)

= qg, (94)

where the alignment {T1, T2, T3, T4} represents a permuted alignment of {A, A, p,
p}. By moving g over G, the permutation qg (equation (94) generates a double
coset representation according to equation (19) as follows:

(C3v\)Td(/C2) = {qg|∀g ∈ Td}. (95)

If g is an improper rotation, the numbering in equation (94) is specified by an
overbar indicating the alternation of chirality, i.e., t g1, t g2, t g3, and t g4, so that
the alignment {T1, T2, T3, T4}, represents a permuted alignment of {A, A, p, p}.

Each permutation of equation (95) generates the corresponding formula
shown in figure 10. Because the left coset decomposition of Td by C2 is
expressed by

Td = I C2 + C2(3)C2 + C3(1)C2 + C3(2)C2 + C2
3(1)C2 + C2

3(2)C2

+ σd(2)C2 + S4(1)C2 + σd(1)C2 + σd(6)C2 + σd(3)C2 + σd(5)C2 (96)

its representative (i.e., {I, C2(3), C3(1), C3(2), C2
3(1)

, C2
3(2)

; σd(2), S4(1), σd(1), σd(6),
σd(3), σd(5)} = {1, 4, 5, 7, 9, 12; 17, 19, 13, 16, 21, 23}) are selected to partition the
functions fg (g ∈ Td ). Theorem 1 indicates that the 24 formulas are partitioned
into 12 (= |Td |/|C2| = 24/2) sets, each of which is surrounded with a box
(figure 10). ��
Example 14 [Reordered formulas]. The top formulas of respective boxes in the
first row of boxes (figure 10), i.e., 119, 121, 123, 125, 127, and 129, are represen-
tatives generated by proper rotations. They are renumbered to give the formulas
shown at the respective bottoms, i.e., 119, 131–135. On the other hand, the top
formulas of respective boxes in the second row of boxes (figure 10), i.e., 136, 138,
140, 142, 144, and 146, are representatives generated by improper rotations. They
are renumbered to the formulas shown at the respective bottoms, i.e., 136, 148–
152, where an overbar represents the alternation of chirality. In accord with the
representative due to equation (96), the subgroups conjugate to C2 are calculated
as follows.
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Figure 10. Tetrahedral formulas generated in accord with the double coset representation
(C3v\)Td (/C2).

C2 = C2(3)C2C−1
2(3)

= σd(2)C2σ
−1
d(2)

= S4(1)C2S−1
4(1)

= { I
︸︷︷︸

1

, C2(1)
︸︷︷︸

2

}, (97)

C′
2 = C3(1)C2C−1

3(1)
= C3(2)C2C−1

3(2)
σd(1)C2σ

−1
d(1)

= σd(6)C2σ
−1
d(6)

= { I
︸︷︷︸

1

, C2(2)
︸︷︷︸

3

},

(98)
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C′′
2 = C2

3(1)C2C−2
3(1)

= C2
3(2)C2C−2

3(2)
= σd(3)C2σ

−1
d(3)

= σd(5)C2σ
−1
d(5) = { I

︸︷︷︸

1

, C2(3)
︸︷︷︸

4

}.

(99)

Among the 24 operations of the right coset representation C3v\Td (figure
3), the operations of C2 fix the formula 119 so that the number of fixed formulas
is equal to 2. On the same line, the numbers of fixed formulas by the operations
of C2 are determined as indicated in the following pairs of parentheses: 131 (2),
136 (2), and 148 (2). Note that 119 and 131 are ascribed to molecular formulas
A2p2, while 136 and 148 are ascribed to molecular formulas A2p2.

The numbers of fixed formulas by the operations of C′
2 are determined as

follows: 132 (2) and 133 (2) for A2p2; as well as 149 (2), and 150 (2) for A2p2.
The numbers of fixed formulas by the operations of C′′

2 are determined as fol-
lows: 134 (2) and 135 (2) for A2p2; as well as 151 (2) and 152 (2) for A2p2.

The remaining operations among the 24 operations of the right coset rep-
resentation C3v\Td move the above formulas so as to give no fixed formulas.
Hence, the number of fixed formulas for A2p2 is equal to 12 and that for A2p2 is
also equal to 12. Totally, the number of fixed formulas is concluded to be equal
to 24. ��

4. Combinatorial enumeration

4.1. Number of fixed formulas per stereoisomer

To generalize the discussions described above, the symbols A, B, X, Y for
achiral ligands, and p and p for a pair of enantiomeric ligands, we use a set (X)
of achiral and chiral ligands as follows:

X = {X1, X2, . . . , Xr ; p1, p2, . . . , pr ; p1, p2, . . . , pr }, (100)

where Xi are achiral and a pair of pi and pi represents an enantiomeric pair.
Strictly speaking, the ligands contained in X should be regarded as proligands,
which are hypothetical ligands which are structureless but have chirality/achiralty
in accord with Fujita’s proligand method [9]. For the sake of convenience, we
here use the term “ligands” in place of the term “proligands” because this usage
would cause no confusion.

Consider θ1 of X1, θ2 of X2, . . . , θr of Xr ; θ ′
1 of p1, θ ′

2 of p2, . . . , θ ′
r of pr ;

θ ′′
1 of p1, θ ′′

2 of p2, . . . , θ ′′
r of pr for the components of the function f (equation

(15)), where

[θ ] : θ1 + θ2 + · · · + θr

+θ ′
1 + θ ′

2 + · · · + θ ′
r

+θ ′′
1 + θ ′′

2 + · · · + θ ′′
r = r. (101)
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Then, the molecular formula M f (equation (16) is represented by the following
equation:

M f = Xθ1
1 Xθ2

2 . . . Xθr
r p

θ ′
1

1 p
θ ′

2
2 . . . pθ ′

r
r p

θ ′′
1

1 p
θ ′′

2
2 . . . pθ ′′

r
r . (102)

It should be noted that a chiral stereoisomer of K-symmetry corresponds to
|K|/2 fixed formulas of one chirality and |K|/2 fixed formulas of the opposite
chirality, as exemplified by example 14 (figure 10). Hence, a pair of such enantio-
meric stereoisomers must be taken into consideration so as to have the following
molecular formula:

M f = 1
2

{

Xθ1
1 Xθ2

2 . . . Xθr
r p

θ ′
1

1 p
θ ′

2
2 . . . pθ ′

r
r p

θ ′′
1

1 p
θ ′′

2
2 . . . pθ ′′

r
r

+ Xθ1
1 Xθ2

2 . . . Xθr
r p

θ ′′
1

1 p
θ ′′

2
2 . . . pθ ′′

r
r p

θ ′
1

1 p
θ ′

2
2 . . . pθ ′

r
r

}

. (103)

Obviously, we can derive a molecular formula for an achiral stereoisomer by
placing θ ′

i = θ ′′
i (i = 1, 2, . . . , r ) in equation (102) as well as in equation (103).

We have already shown examples of this case, where chiral ligands are placed in
an enantiospheric environment (e.g., p2p2 in figure 8 and ABpp in figure 9).

Strictly speaking, each achiral Xi in the second term of equation (103)
should be hypothetically expressed by Xi . Because of Xi = Xi , the symbol Xi is
used in place of Xi . For example, in cases where only achiral ligands are taken
into consideration (e.g., ABXY), even a chiral stereoisomer takes a molecular
formula apparently represented by equation (102). Such cases as ABXY should
be interpreted by considering a hypothetical term, 1

2 (ABXY + ABXY), which is
equal to ABXY because of ABXY = ABXY. Whether the molecular formula
is represented by equation (102) or equation (103), the number of fixed formu-
las is concluded to be equal to |G|.

The K-symmetry described above moves over the subgroups of G so as to
result in the occurrence of one or more stereoisomers of various subsymmetries
of G, even though a given pattern [θ ] is taken into consideration. Let the symbol
Bθ denote the number of such stereoisomers as assigned to the partition [θ ]
(equation (101)), the generating function for Bθ is expressed as follows:

∑

[θ ]
BθXθ1

1 Xθ2
2 . . . Xθr

r p
θ ′

1
1 p

θ ′
2

2 . . . pθ ′
r

r p
θ ′′

1
1 p

θ ′′
2

2 . . . pθ ′′
r

r , (104)

where the summation is concerned with all of the partitions ([θ ]) shown in equa-
tion (101). It should be noted that, if the molecular formula Mf (equation (102))
represents a chiral stereoisomer, it is combined with the molecular formula of its
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enantiomer so as to be interpreted by the following combined molecular formula:

Bθ × 1
2

{

Xθ1
1 Xθ2

2 . . . Xθr
r p

θ ′
1

1 p
θ ′

2
2 · · · pθ ′

r
r p

θ ′′
1

1 p
θ ′′

2
2 . . . pθ ′′

r
r

+ Xθ1
1 Xθ2

2 . . . Xθr
r p

θ ′′
1

1 p
θ ′′

2
2 . . . pθ ′′

r
r p

θ ′
1

1 p
θ ′

2
2 . . . pθ ′

r
r

}

, (105)

which is based on equation (103). Because each stereoisomer (or each pair of
enantiomers) appearing in equation (104) has |G| fixed formulas, the numbers of
fixed formulas appear as the coefficients of the terms in the following generating
function:

|G|
∑

[θ ]
BθXθ1

1 Xθ2
2 . . . Xθr

r p
θ ′

1
1 p

θ ′
2

2 . . . pθ ′
r

r p
θ ′′

1
1 p

θ ′′
2

2 . . . pθ ′′
r

r . (106)

4.2. Number of fixed formulas per permutation

4.2.1. Sphericities of cycles
In the preceding discussions, the CFs has been clarified as follows: homo-

spheric double cosets correspond to achiral ligands; enantiospheric double cosets
correspond to achiral ligands as well as a enantiomeric pair of chiral ligands; and
hemispheric double cosets correspond to achiral ligands and chiral ligands.

A right coset representation (equation (4) and the corresponding double
coset representation (equation (19)) move concurrently through g (∈ G), because
the set of right cosets (equation (1)) corresponds to the set of double cosets
(equation (15)) in one-to-one fashion.

Let the permutation p[R]
g (equation (3)) be represented by a cycle decompo-

sition involving the number νd(p[R]
g ) of d-cycles, where we place

r
∑

d=1

dνd(p[R]
g ) = r. (107)

Thus, the permutation p[R]
g (equation 3) possesses a cycle structure represented

as follows:

1ν1(p[R]
g )2ν2(p[R]

g ) · · · dνd (p[R]
g ) · · · rνr (p[R]

g ). (108)

Each d-cycle appearing in equation (107) acts on the corresponding set of
double cosets, which appears in equation (15). The action of the d-cycle varies
in accord with the sphericities of the double cosets.

Strictly speaking, equation (108) should be multiplied in accord with right
cosets to be considered. In other words, the H of (H\)G moves on the set of
subgroups of G so as to cover the right cosets to be considered. Even such cases,
however, we obtain cycle structures of the same kind as equation (108) so that we
can continue our discussion by using equation (108) without losing generality.
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Next, the sphericities of double cosets proposed in the present paper shall
be correlated to those of cycles which have been formulated in Fujita’s proligand
method [9,10].

1. When g (∈ G) is a proper rotation, a d-cycle of p[R]
g (cf. equation (107)

whether d is odd or even) permutes d double cosets, which are equiva-
lent so as to construct a d-membered set of hemispheric double cosets, a
d-membered set of homospheric double cosets, or a d-membered set of
enantiospheric double cosets. It follows that the d-cycle is allowed to act
on chiral and achiral ligands of the same kind without any restriction.
The d-cycle is called a hemispheric cycle, which is designated by the sphe-
ricity index bd . The action on each d-membered set can be expressed by
the following equation:

bd = Xd
1 + Xd

2 + · · · + Xd
r + pd

1 + pd
2 + · · · + pd

r + pd
1 + pd

2 + · · · + pd
r ,

(109)

which is called a ligand inventory for the hemispheric cycle.

2. Let g (∈ G) be an improper rotation and the integer d be odd. A d-cycle
contained in p[R]

g (cf. equation 107) permutes d double cosets, which are
equivalent so as to construct a d-membered set of homospheric double
cosets. It follows that the d-cycle is allowed to act on achiral ligands of
the same kind. The d-cycle is called a homospheric cycle, which is des-
ignated by the sphericity index ad . The action on each d-membered set
can be expressed by the following equation:

ad = Xd
1 + Xd

2 + · · · + Xd
r , (110)

which is called a ligand inventory for the homospheric cycle.

3. Let g (∈ G) be an improper rotation and the integer d be even. A d-cycle
contained in p[R]

g (cf. equation (107)) permutes d double cosets, which are
equivalent so as to construct a d-membered set of homospheric double co-
sets or a d-membered set of enantiospheric double cosets. It follows that the
d-cycle is allowed to act on a set of achiral ligands of the same kind or on a
pairwise set, which contains d/2 of chiral ligands of the same kind and d/2 of
their enantiomeric ligands. The d-cycle is called a enantiospheric cycle, which
is designated by the sphericity index cd . The action on each d-membered set
can be expressed by the following equation:

cd = Xd
1 + Xd

2 + · · · + Xd
r + 2pd/2

1 pd/2
1 + 2pd/2

2 pd/2
2 + · · · + 2pd/2

r pd/2
r ,

(111)

which is called a ligand inventory for the enantiospheric cycle.
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The present ligand inventories are the same contents as defined otherwise in Fuj-
ita’s proligand method [9,10].

4.2.2. Products of sphericity indices
The sphericities of cycles described above allow us to assign a product of

sphericity indices to each permutation p[R]
g (equation (3)) in accord with equa-

tion (107), i.e.,

$
ν1(p[R]

g )

1 $
ν2(p[R]

g )

2 · · · $
νd (p[R]

g )

d · · · $
νr (p[R]

g )
r , (112)

where the symbol $d indicates bd for a hemispheric cycle, ad for a homospher-
ic cycle, or cd for an enantiospheric cycle. After the introduction of the ligand
inventories (equations (109)–(111)) into the product of sphericity indices (equa-
tion (112)), the expansion of the resulting equation produces a generating func-
tion for calculating the numbers of fixed formulas which are concerned with
equation (112). When g runs over G in the form of the right coset representation
H\G, the respective products (equation (112)) are summed up after the introduc-
tion of the ligand inventories so as to give the generating function:

∑

g∈G
$
ν1(p[R]

g )

1 $
ν2(p[R]

g )

2 · · · $
νd (p[R]

g )

d · · · $
νr (p[R]

g )
r , (113)

where the number of fixed formulas for each molecular formula (equation (102)
or equation (103)) appears as the coefficient of the corresponding term.

4.3. Fujita’s proligand method

4.3.1. Enumeration of achiral plus chiral stereoisomers
The total number of fixed formulas calculated from the numbers of fixed

formulas per stereoisomer (equation (106)) is equal to the total number of fixed
formulas calculated from the numbers of fixed formulas per permutation (equa-
tion (113)), because they are simply different in the orders of summation. Hence,
the equalization of equation (106) with equation (113) gives the following gener-
ating function:

∑

[θ ]
BθXθ1

1 Xθ2
2 · · · Xθr

r p
θ ′

1
1 p

θ ′
2

2 · · · pθ ′
r

r p
θ ′′

1
1 p

θ ′′
2

2 · · · pθ ′′
r

r

= 1
|G|

∑

g∈G
$
ν1(p[R]

g )

1 $
ν2(p[R]

g )

2 · · · $
νd (p[R]

g )

d · · · $
νr (p[R]

g )
r , (114)

where the sphericity indices $d (= ad , bd , cd ) are replaced by the ligand invento-
ries shown in equations (109)–(111).
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To go on with further discussions, a CI-CFs is defined as follows:

CI-CF(G, $d) = 1
|G|

∑

g∈G
$
ν1(p[R]

g )

1 $
ν2(p[R]

g )

2 · · · $
νd (p[R]

g )

d · · · $
νr (p[R]

g )
r (115)

by using the right-hand side of equation (114) without introducing the ligand
inventories. For cases in which H of the (H\)G moves on the subgroups of G so
as to construct two or more orbits, the CI-CF should be expressed on the basis
of

∑

H
, (H\)G. Thereby, we obtain following theorem:

Theorem 4. Let (H\)G be a right coset representation of a point group G by
its subgroup H, where such a set of double cosets as represented by equations
(15) or (36) is governed by the corresponding double coset representation, i.e.,
(H\)G(/K) (equation (19)) or generally (H\)G(/g̃ j Kg̃−1

j ) (equation (38). On the
action of g (∈ G), the double coset representations ( j = 1, 2, . . . , s = (|G|/|K|))
moves concurrently with the right coset representation (H\)G.

Suppose the cycle structure of the (H\)G is represented by equation (108).
Each set of double cosets corresponds to a function, i.e., f j ( j = 1, 2, . . . , or s)
of F (equation (40)), where its components, f j (i) (i = 1, 2, . . . , r(= |G|/|H|)),
correspond to the double cosets of the set. Then, suppose that each component
of the function f j is ascribed to an achiral or a chiral ligand selected from such
a set of ligands as represented by equation (100) so that the resulting set F rep-
resents a stereoisomer having a molecular formula of the partition [θ ] (equations
(102) or (103)). The F is correlated to the K-symmetry, which runs over the sub-
groups of G so as to generate Bθ non-equivalent stereoisomers. The numbers
of non-equivalent stereoisomers Bθ contained in equation (104) appear as the
coefficients in a generating function represented as follows:

∑

[θ ]
BθXθ1

1 Xθ2
2 . . . Xθr

r p
θ ′

1
1 p

θ ′
2

2 . . . pθ ′
r

r p
θ ′′

1
1 p

θ ′′
2

2 . . . pθ ′′
r

r = CI-CF(G, $d), (116)

where the sphericity indices $d (ad , bd , or cd ) in the CI-CF are replaced by the
ligand inventories shown in equations. (109), (110), or (111). ��

For cases in which H of the (H\)G moves on the subgroups of G so as to
construct two or more orbits, this theorem should be formulated generally on
the basis of

∑

H
, (H\)G. This means that the components of the f j should be

expressed as f j (i, i ′, . . .) (i = 1, 2, . . . , r(= |G|/|H|); i ′ = 1, 2, . . . , r ′(= |G|/|H′|);
as so on). Obviously, theorem 4 can be easily extended to satisfy such general
cases.

Example 15 [Achiral and chiral stereoisomers from a methane skeleton]. The
products of cycles for the permutations of the right coset representation (C3v\)Td
(figure 3) give the corresponding products of sphericity indices, as shown also in
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figure 3. These are summed up in accord with equation (115) so as to give a CI-
CF for this case:

CI-CF(Td , $d) = 1
24

(

b4
1 + 3b2

2 + 8b1b3 + 6a2
1c2 + 6c4

)

. (117)

Let us consider the following set containing achiral and chiral ligands:

X = {A, B, X, Y; p, q, r, s; p, q, r, s} (118)

from which four ligands are selected as substituents, i.e., θA of A, θB of B, θX of
X, θY of Y (achiral ligands); θp of p, θq of q, θr of r, θs of s (chiral ligands); θp
of p, θ q of q, θ r of r, and θ s of s (enantiomeric chiral ligands) so as to generate
a stereoisomer having the following molecular formula:

M f = AθA BθBXθX YθY pθpqθqrθr sθsp θ pq θ qr θ r s θ s . (119)

The powers of the respective ligands contained in equation (119) satisfy the fol-
lowing partition:

[θ ] : θA + θB + θX + θY + θp + θq + θr + θs + θp + θ q + θ r + θ s = 4. (120)

According to equations (109)–(111), we obtain the following ligand inventories:

bd = Ad + Bd + Xd + Yd + pd + qd + rd + sd + pd + qd + rd + sd , (121)

ad = Ad + Bd + Xd + Yd , (122)

cd = Ad + Bd + Xd + Yd + 2pd/2pd/2 + 2qd/2qd/2 + 2rd/2rd/2 + 2sd/2sd/2.

(123)

After these ligand inventories are introduced into the CI-CF (equation (117)),
the resulting equation is expanded to give a generating function as follows:

F = [ABXY] + [ppqq + · · · ] + [1
2 (p4 + p4) + · · · ]

+[1
2 (A3p + A3p) + · · · ] + [1

2 (Ap3 + Ap3) + · · · ] + [1
2 (p3q + p3q) + · · · ]

+[1
2 (p3p + p3p) + · · · ] + [1

2 (A2p2 + A2p2) + · · · ]
+[1

2 (p2q2 + p2q2) + · · · ] + [1
2 (A2Bp + A2Bp) + · · · ]

+[1
2 (A2pq + A2pq) + · · · ] + [1

2 (ABp2 + ABp2) + · · · ]
+[1

2 (Ap2p + Ap2p) + · · · ] + [1
2 (Ap2q + Ap2q) + · · · ]

+[1
2 (p2pq + p2pq)+· · · ] + [1

2 (p2qq + p2qq) + · · · ] + [1
2 (p2qr + p2qr) + · · · ]

+[2
2 (ABXp + ABXp) + · · · ] + [2

2 (ABpq + ABpq) + · · · ]
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+[2
2 (Appq + Appq) + · · · ] + [2

2 (Apqr + Apqr) + · · · ]
+[2

2 (ppqr + ppqr) + · · · ] + [2
2 (pqrs + pqrs) + · · · ]

+[A4 + · · · ] + [A3B + · · · ] + [A2B2 + · · · ] + [p2p2 + · · · ]
+[A2BX + · · · ] + [A2pp + · · · ] + [2ABpp + · · · ]. (124)

The term in each pair of brackets in equation (124) is a representative for
representing stereoisomers of the same kind of partitions. For example, the
term 1

2 (p4 + p4) in the third pair of brackets represents the terms, 1
2 (p4 + p4),

1
2 (q4 + q4), 1

2 (r4 + r4), and 1
2 (s4 + s4). The coefficient of each term (i.e., molecu-

lar formula) indicates the corresponding number of stereoisomers. For the num-
bers of chiral stereoisomers, a comment should be again added here. The term
1
2 (p4 +p4) should be interpreted as designating 1× 1

2 (p4 +p4), the coefficient 1 of
which indicates the existence of one stereoisomer (one enantiomeric pair) having
the molecular formula. On the other hand, the term 2

2 (ABXp + ABXp) should
be interpreted as being 2× 1

2 (ABXp+ABXp), the coefficient 2 of which indicates
the existence of two stereoisomers (two enantiomeric pairs) having the molecular
formula. It should be noted that the terms ABXY and ppqq show special cases
of chiral stereoisomers in which respective enantiomers have the same molecular
formula. Hence, the terms should be interpreted as 1 × 1

2 (ABXY + ABXY) and
1 × 1

2 (ppqq + ppqq).
Obviously, two diastereomers of ABpp are correctly counted because the

coefficient of the term is equal to 2. Thus, this result is in agreement with the
stereochemical viewpoint (cf. figure 9). The existence of two enantiomeric pairs
corresponding to such a term as 2

2 (pqrs + pqrs) is also assured, as indicated by
the coefficient 2 of the term 2 × 1

2 (pqrs + pqrs).
The results described here are in agreement with those described in [23, 24],

which reported more detailed data itemized with subsymmetries. ��
Theorem 4 has the same content as theorem 1 of Fujita’s proligand method

[9], which was proved otherwise without using the concept of double coset rep-
resentations proposed in the present paper. Moreover, the discussions described
for proving theorem 4 are expected to provide us with a common foundation for
comprehending Fujita’s USCI approach based on subduction of coset represen-
tations [11, 25], Fujita’s characteristic-monomial (CM) method based on subduc-
tion of Q-conjugacy representations [26, 27], and Fujita’s enumeration method
based on subduction of dominant representations [12, 13], where these result in
the derivations of CI-CFs of the same kind as described in theorem 4. This point
will be a further target to be pursued.

4.3.2. Enumeration of achiral stereoisomers
In accord with the treatment described in [10], we consider the maximum

chiral subgroup G′ of the group G. Among the terms contained in equation
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(115), the terms corresponding to the subgroup G′ are collected to give the fol-
lowing CI-CF:

CI-CF(G′, bd) = 1
|G′|

∑

g∈G′
b

ν1(p[R]
g )

1 b
ν2(p[R]

g )

2 . . . b
νd (p[R]

g )

d . . . b
νr (p[R]

g )
r , (125)

where only hemispheric indices remain and |G′| = |G|/2. Let us replace the CI-
CF in equation (116) by the CI-CF in equation (125) so as to give the following
equation:

∑

[θ ]
B ′

θXθ1
1 Xθ2

2 . . . Xθr
r p

θ ′
1

1 p
θ ′

2
2 . . . pθ ′

r
r p

θ ′′
1

1 p
θ ′′

2
2 . . . pθ ′′

r
r = CI-CF(G′, bd), (126)

where the sphericity indices bd are replaced by the ligand inventories shown in
equation (109). Then, we obtain a generating function for calculating the num-
ber of stereoisomers B ′

θ , where an achiral stereoisomer is counted once, while a
chiral stereoisomer and its enantiomer are counted separately. Let the symbol
A represent a generating function for calculating achiral stereoisomers and the
symbol C represent a generating function for calculating enantiomeric pairs of
chiral stereoisomers. Then, equation (126) means that

CI-CF(G′, bd) = A + 2C, (127)

while equation (116) means that

CI-CF(G, $d) = A + C. (128)

Hence A and C are calculated as follows:

A = 2CI-CF(G, $d) − CI-CF(G′, bd), (129)

C = CI-CF(G′, bd) − CI-CF(G, $d). (130)

The sphericity indices $d (i.e., ad , bd , or cd ) in the CI-CFs (equations (129) and
(130)) are replaced by the ligand inventories shown in equations (109), (110), or
(111). Obviously, the coefficient 2Bθ − B ′

θ (= Aθ ) for achiral stereoisomers and
the coefficient B ′

θ − Bθ (= Cθ ) for enantiomeric pairs of chiral stereoisomers
appear in equations (129) and (130) after expansion.

Because of the relationship |G′| = |G|/2, the twice of the CI-CF(G, $d)

(equation (115)) contains the CI-CF(G′, bd) (equation (125)) once and only once,
where the terms contained in the CI-CF(G′, bd) are concerned with proper rota-
tions. It follows that the remaining terms in the A (equation (129)) is concerned
with improper rotations only, i.e., G = G − G′. Thereby, we can define the
CI-CFA as follows:

A = CI-CFA(G, $d) = 1

|G|
∑

g∈G

$
ν1(p[R]

g )

1 $
ν2(p[R]

g )

2 . . . $
νd (p[R]

g )

d . . . $
νr (p[R]

g )
r , (131)
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where the sphericity indices $d are ad or cd and no terms having bd appear. It
should be noted that the summation is concerned with improper rotations g ∈ G
(= G − G′) and the divisor is equal to |G| = |G|/2. By using equation (131),
the numbers of achiral stereoisomers Aθ are calculated according to the follow-
ing theorem:

Theorem 5. Suppose that the resulting set F described in theorem 4 represents
an achiral stereoisomer having a molecular formula of the partition [θ ] (equa-
tion (102)). The numbers of non-equivalent achiral stereoisomers Aθ appear as
the coefficients in a generating function represented as follows:

∑

[θ ]
AθXθ1

1 Xθ2
2 . . . Xθr

r p
θ ′

1
1 p

θ ′
2

2 . . . pθ ′
r

r p
θ ′′

1
1 p

θ ′′
2

2 . . . pθ ′′
r

r = CI-CFA(G, $d), (132)

where the sphericity indices $d (ad or cd ) in the CI-CFA (equation (131)) are
replaced by the ligand inventories shown in equations (110) or (111).

Example 16 [Achiral stereoisomers from a methane skeleton]. From the data col-
lected in figure 3, the products of sphericity indices for the twelve improper rota-
tions are summed up in accord with equation (131) so as to give a CI-CFA for
this case:

CI-CFA(Td , $d) = 1
12

(

6a2
1c2 + 6c4

)

= 1
2

(

a2
1c2 + c4

)

, (133)

where we place Td = Td − T. From the set X (equation (118)), four ligands are
selected as substituents, i.e., θA of A, θB of B, θX of X, θY of Y (achiral lig-
ands); θp of p, θq of q, θr of r, θs of s (chiral ligands); θp of p, θq of q, θ r of r,
and θ s of s (enantiomeric chiral ligands) so as to generate a stereoisomer having
the molecular formula Mf (equation (119)). The powers of the respective ligands
contained in equation (119) satisfy the partition shown in equation (120). After
the ligand inventories shown in equations (122) and (123) are introduced into the
CI-CFA (equation (133)), the resulting equation is expanded to give a generat-
ing function as follows:

F = [A4 + · · · ] + [A3B + · · · ]
+[A2B2 + · · · ] + [p2p2 + · · · ] + [A2BX + · · · ] + [A2pp + · · · ]
+[2ABpp + · · · ]. (134)

The term in each pair of brackets in equation (134) is a representative for repre-
senting achiral stereoisomers of the same kind of partitions. ��
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4.3.3. Enumeration of chiral stereoisomers
By combining equation (129) with equation (131), we obtain the following

equation:

2CI-CF(G, $d) = CI-CF(G′, bd) + CI-CFA(G′, bd). (135)

This equation is introduced into equation (130) so as to generate the generating
function C for the numbers of chiral stereoisomers (enantiomeric pairs), i.e.,

C = 1
2 CI-CF(G′, bd) − 1

2 CI-CFA(G, $d). (136)

By introducing equations (125) and (131) into equation (136) (note that |G′| =
|G| = |G|/2), we can define the CI-CFC as follows:

C = CI-CFC(G′, $d)

= 1
|G|

⎧

⎪
⎨

⎪
⎩

∑

g∈G′
b

ν1(p[R]
g )

1 b
ν2(p[R]

g )

2 · · · b
νd (p[R]

g )

d · · · b
νr (p[R]

g )
r

−
∑

g∈G

$
ν1(p[R]

g )

1 $
ν2(p[R]

g )

2 · · · $
νd (p[R]

g )

d · · · $
νr (p[R]

g )
r

⎫

⎪
⎬

⎪
⎭

, (137)

where the sphericity indices $d in the latter summation are ad or cd . It should
be noted that the first summation is concerned with proper rotations g ∈ G′;
the second summation is concerned with improper rotations g ∈ G (= G − G′);
and the divisor is equal to |G|. The comparison of the CI-CFC (equation (137))
with the CI-CF (equation (115)) reveals that the plus signs of the terms for the
improper rotations appearing in the latter (equation (115)) are simply changed
into minus signs so as to generate the former (equation (137)). By using equa-
tion (137), the numbers of achiral stereoisomers Cθ are calculated according to
the following theorem:

Theorem 6. Suppose that the resulting set F described in theorem 4 represents
a chiral stereoisomer having a molecular formula of the partition [θ ] (equation
(102)). The numbers of chiral stereoisomers Cθ appear as the coefficients in a
generating function represented as follows:

∑

[θ ]
CθXθ1

1 Xθ2
2 . . . Xθr

r p
θ ′

1
1 p

θ ′
2

2 . . . pθ ′
r

r p
θ ′′

1
1 p

θ ′′
2

2 . . . pθ ′′
r

r = CI-CFC(G′, $d), (138)

where the sphericity indices $d (bd , ad , or cd ) in the CI-CFC (equation (137)) are
replaced by the ligand inventories shown in equations (109), (110), or (111). ��
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Example 17 [Chiral stereoisomers from a methane skeleton]. From the data col-
lected in figure 3, the 24 products of sphericity indices are summed up or sub-
tracted in accord with equation (137) so as to give a CI-CFC for this case:

CI-CFC(T, $d) = 1
24

(

b4
1 + 3b2

2 + 8b1b3 − 6a2
1c2 − 6c4

)

. (139)

From the set X (equation (118)), four ligands are selected as substituents, i.e.,
θA of A, θB of B, θX of X, θY of Y (achiral ligands); θp of p, θq of q, θr of r,
θs of s (chiral ligands); θp of p, θq of q, θ r of r, and θ s of s (enantiomeric chi-
ral ligands), so as to generate a chiral stereoisomer having the molecular formula
Mf (equation (119)). The powers of the respective ligands contained in equation
(119) satisfy the partition shown in equation (120). After the ligand inventories
shown in equations (121)–(123) are introduced into the CI-CFC (equation (139)),
the resulting equation is expanded to give a generating function as follows:

F ′ = [ABXY] + [ppqq + · · · ] +
[

1
2
(p4 + p4) + · · ·

]

+
[

1
2
(A3p + A3p) + · · ·

]

+
[

1
2
(Ap3 + Ap3) + · · ·

]

+
[

1
2
(p3q + p3q) + · · ·

]

+
[

1
2
(p3p + p3p) + · · ·

]

+
[

1
2
(A2p2 + A2p2) + · · ·

]

+
[

1
2
(p2q2 + p2q2) + · · ·

]

+
[

1
2
(A2Bp + A2Bp) + · · ·

]

+
[

1
2
(A2pq + A2pq) + · · ·

]

+
[

1
2
(ABp2 + ABp2) + · · ·

]

+
[

1
2
(Ap2p + Ap2p) + · · ·

]

+
[

1
2
(Ap2q + Ap2q) + · · ·

]

+
[

1
2
(p2pq + p2pq) + · · ·

]

+
[

1
2
(p2qq + p2qq) + · · ·

]

+
[

1
2
(p2qr + p2qr) + · · ·

]

+
[

2
2
(ABXp + ABXp) + · · ·

]

+
[

2
2
(ABpq + ABpq) + · · ·

]

+
[

2
2
(Appq + Appq) + · · ·

]

+
[

2
2
(Apqr + Apqr) + · · ·

]

+
[

2
2
(ppqr + ppqr) + · · ·

]

+
[

2
2
(pqrs + pqrs) + · · ·

]

. (140)

The term in each pair of brackets in equation (140) is a representative for repre-
senting chiral stereoisomers of the same kind of partitions. ��
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4.4. Pólya’s theorem as a special case

As found easily, Pólya’s theorem is a special case of theorem 4, where the
CI-CF (equation (115)) is reduced into the CI without CF (i.e., Pólya’s CI).
Thus, the sphericity indices, bd , ad , and cd , are replaced by a single dummy var-
iable sd . As a result, Pólya’s theorem takes account of achiral ligands (or atoms)
only as substituents although this fact had not been mentioned explicitly until
Fujita’s proligand method was proposed [9]. If chiral ligands are considered in
an enumeration based on Pólya’s Theorem, the result is inconsistent with stereo-
chemistry, as shown in the following example:

Example 18 [Stereoisomer enumeration without considering sphericities]. The
sphericity indices (bd , ad , and cd ) appearing in equation (117) are replaced by a
single dummy variable sd so as to give the CI, which is equivalent to that derived
by Pólya’s theorem:

CI(Td , sd) = 1
24

(

s4
1 + 3s2

2 + 8s1s3 + 6s2
1s2 + 6s4

)

. (141)

From the set X (equation (118)), four ligands are selected as substituents, i.e.,
θA of A, θB of B, θX of X, θY of Y (achiral ligands); θp of p, θq of q, θr of
r, θs of s (chiral ligands); θp of p, θq of q, θ r of r, and θ s of s (enantiomeric
chiral ligands), so as to generate a stereoisomer having the molecular formula
M f (equation (119)). The powers of the respective ligands contained in equation
(119) satisfy the partition shown in equation (120). In this case, we use a ligand
inventory represented by the following equation:

sd = Ad + Bd + Xd + Yd + pd + qd + rd + sd + pd + qd + rd + sd . (142)

After the ligand inventory is introduced into the CI (equation (141)), the result-
ing equation is expanded to give a generating function as follows:

F ′′ = [ABXY] + [ppqq + · · · ] + [(p4 + p4) + · · · ] + [(A3p + A3p) + · · · ]
+[(Ap3 + Ap3) + · · · ] + [(p3q + p3q) + · · · ] + [(p3p + p3p) + · · · ]
+[(A2p2 + A2p2) + · · · ] + [(p2q2 + p2q2) + · · · ] + [(A2Bp + A2Bp) + · · · ]
+[(A2pq + A2pq) + · · · ] + [(ABp2 + ABp2) + · · · ]
+[(Ap2p + Ap2p) + · · · ] + [(Ap2q + Ap2q) + · · · ]
+[(p2pq + p2pq) + · · · ] + [(p2qq + p2qq) + · · · ] + [(p2qr + p2qr) + · · · ]
+[(ABXp + ABXp) + · · · ] + [(ABpq + ABpq) + · · · ]
+[(Appq + Appq) + · · · ] + [(Apqr + Apqr) + · · · ]
+[(ppqr + ppqr) + · · · ] + [(pqrs + pqrs) + · · · ] + [A4 + · · · ] + [A3B + · · · ]
+[A2B2 + · · · ] + [p2p2 + · · · ] + [A2BX + · · · ] + [A2pp + · · · ]
+[ABpp + · · · ]. (143)
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The term in each pair of brackets in equation (143) is a representative for rep-
resenting stereoisomers of the same kind of partitions.

Obviously, the two diastereomers of ABpp are regarded as a single stereo-
isomer, which is in disagreement with the stereochemical viewpoint (cf. figure
9). The existence of two enantiomeric pairs corresponding to such a term as
(ABXp + ABXp) cannot be clarified by equation (143), although the two enan-
tiomeric pairs are so diastereomeric to be counted distinctly.

The result (equation (143)) contains another type of disagreement with the
stereochemical viewpoint. Thus, the coefficient 1 of the term ABXY indicates
that the two enantiomers of this molecular formula is counted once. On the
other hand, such terms as appearing in (p4 + p4) indicate that two enantiomers
counted separately. ��

In order to avoid the disagreement described in example 18, we should
equalize chiral ligands (e.g. p) and their enantiomeric ligands (e.g., p). For this
purpose, we should use the following ligand inventory:

sd = Ad + Bd + Xd + Yd + pd + qd + rd + sd (144)

in place of equation (142). This means that ligands, even chiral, are regarded as
graphs, not as three-dimensional objects within the scope of Pólya’s theorem. In
summary, Pólya’s theorem is concluded to count graphs, not stereoisomers.

5. Conclusions

The concept of double coset representations is proposed to characterize ste-
reoisomerism. Thus, when a skeleton belongs to a point group G, its substitu-
tion positions are governed by right coset representations (H\)G, where the H
is a subgroup of G. Then, a set of homomeric stereoisomers of K-symmetry is
governed by a double coset representation (H\)G(/K), which is based on dou-
ble cosets HgK (g ∈ G). This is generalized to describe sets of homomeric ste-
reoisomers, which are governed by double coset representations (H\)G(/g j Kg−1

j )

based on double cosets Hg(g j Kg−1
j ), where the operations g j ( j = 1, 2, . . . , s(=

|G|/|K|)) are representatives of a left coset decomposition of G by K and g1 = I .
In order to treat chiral ligands as well as achiral ligands, the concept of spheric-
ities of double cosets is proposed so that double cosets are classified into homo-
spheric double cosets, enantiospheric double cosets, or hemispheric double cosets.
The sphericities of double cosets determine modes of substitutions (i.e., chirality
fittingness), where homospheric double cosets permit achiral ligands only; enan-
tiospheric double cosets permit achiral ligands or enantiomeric pairs; and hemi-
spheric double cosets permit achiral and chiral ligands. These results hold true
when H and K run over the subgroups of G.
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In order to apply the sphericities of double cosets to combinatorial enu-
meration of stereoisomers, they are linked to the sphericities of cycles which are
ascribed to the right coset representation (H\)G. The resulting products of sphe-
ricity indices are used to construct a CI-CFs, which is proved to be identical with
the CI-CF introduced in Fujita’s proligand method [9].
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